Air Pollutants and the Cuticle: Implications for Plant Physiology

  • Markus Riederer
  • Reinhard Jetter
  • Claus Markstädter
  • Lukas Schreiber
Part of the NATO ASI Series book series (volume 36)


The physiologically most important function of the plant cuticle is to control the loss of water and of inorganic and organic constituents of plants via the surfaces of leaves and fruits. In a polluted environment, the cuticle may also affect the rates of uptake of extraneous chemicals. It will be shown how the essential transport properties of plant cuticles can be determined experimentally using intact leaves, isolated cuticles, and reconstituted cuticular waxes. The transport properties will be related to the physico-chemical properties of the permeants in order to achieve a general description of pollutant transport across the leaf/atmosphere interface and to assess the relative contributions of the cuticular and the stomatal pathways to the total flow rate. The correlation of the transport properties of cuticles with their chemical composition will be discussed and a model of the molecular structure of the transport-limiting barrier of the cuticle and of epicuticular waxes be presented. The effects of chemicals of anthropogenic and biogenic origin on cuticular permeability will be described quantitatively.


Leaf Cuticle Cuticular Membrane Plant Cuticle Amorphous Zone Crystalline Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Basson I, Reynhardt EC (1988) An investigation of the structures and molecular dynamics of natural waxes: II. Carnauba wax. J Phys D: Appl Phys 21: 1429–1433CrossRefGoogle Scholar
  2. Geyer U; Schönherr J (1989) In vitro test for effect of surfactants and formulation on permeability of plant cuticles. In Cross B, Scher HB (eds) Pesticide formulations: innovations and developments. ACS Symposium Series 371, American Chemical Society, Washington, pp 22–33CrossRefGoogle Scholar
  3. Jetter R (1993) Chemische Zusammensetzung, Struktur und Bildung röhrenförmiger Wachskristalle auf Pflanzenoberflächen. Doct. Diss., Universität KaiserslauternGoogle Scholar
  4. Kerler F, Schönherr J (1988a) Accumulation of lipophilic chemicals in plant cuticles: prediction from octanol/water partition coefficients. Arch Environ Contam Toxicol 17: 1–6CrossRefGoogle Scholar
  5. Kerler F, Schönherr J (1988b) Permeation of lipophilic chemicals across plant cutiles: prediction from partition coefficients and molecular volumes. Arch Environ Contam Toxicol 17: 7–12CrossRefGoogle Scholar
  6. Markstäer C (1993) Die Wirkung von Umweltfaktoren auf die Zusammensetzung der kutikulären Wachse von Blättern von Fagus sylvatica L. Doct. Diss., Universität KaiserslauternGoogle Scholar
  7. Reynhardt EC, Riederer M (1991) Structure and molecular dynamics of the cuticular wax from leaves of Citrus aurantium L. J Phys D: Appl Phys 24: 478–486Google Scholar
  8. Reynhardt EC, Riederer M, Schneider G (1993) Structures and molecular dynamics of plant waxes. II. Cuticular waxes from leaves of Fagus sylvatica L. and Hordeum vulgare L. Eur Biophys J (in press)Google Scholar
  9. Riederer M, Schönherr J (1985) Accumulation and transport of (2,4-dichlorophenoxy)acetic acid in plant cuticles: II. Permeability of the cuticular membrane. Ecotoxicol Environ Safety 9: 196–208Google Scholar
  10. Riederer M, Schönherr J (1990) Effects of surfactants on water permeability of isolated plant cuticles and on the composition of their cuticular waxes. Pestic Sei 29: 85–94Google Scholar
  11. Riederer M, Schreiber L (1993) Waxes — the transport barriers of plant cuticles. In Hamilton RJ (ed) Waxes. The Oily Press, West Ferry (in press)Google Scholar
  12. Riederer M (1990) Estimating partitioning and transport of organic chemicals in the foliage/atmosphere system: discussion of a fugacity-based model. Environ Sci Technol 24: 829–839Google Scholar
  13. Riederer M (1994) Partitioning and transport of organic chemicals between the atmospheric environment and leaves. In Trapp S, McFarlane C (eds) Plant contamination: Modeling and simulation of organic chemicals processes. Lewis Publishers, Chelsea, MI (inpress)Google Scholar
  14. Riederer M; Schneider G (1990) The effect of the environment on the permeability and composition of Citrus leaf cuticles. II. Composition of soluble cuticular lipids and correlation with transport properties. Planta 180:154–165Google Scholar
  15. Sabljic A, Glisten H, Schonherr J, Riederer M (1990) Modeling plant uptake of airborne organic chemicals. 1. Plant cuticle/water partitioning and molecular connectivity. Environ Sci Technol 24:1321–1326Google Scholar
  16. Schönherr J, Riederer M (1989) Foliar penetration and accumulation of organic chemicals in plant cuticles. Rev Environ Contam Toxicol 108: 1–70Google Scholar
  17. Schönherr J, Riederer M, Schreiber L, Bauer H (1991) Foliar uptake of pesticides and its activation by adjuvants: Theories and methods of optimization. In Frehse H (ed) Pesticide chemistry, VCH Verlagsgesellschaft, Weinheim, pp 237–253Google Scholar
  18. Schönherr J (1993a) Effects of monodisperse alcoholethoxylates on mobility of 2,4-D in isolated plant cuticles. Pestic Sci 38: 155–164CrossRefGoogle Scholar
  19. Schönherr J (1993b) Effects of alcohols, glycols and monodisperse ethoxylates alcohols on mobility of 2,4-D in isolated plant cuticles. Pestic Sci (in press)Google Scholar
  20. Schreiber L, Schönherr J (1992) Uptake of organic chemicals in conifer needles: Surface adsorption and permeability of cuticles. Environ Sci Technol 26: 153–159CrossRefGoogle Scholar
  21. Schreiber L, Schönherr J (1993a) Contact areas between waxy leaf surfaces and aqueous solutions: Quantitative determination of specific leaf surface contact areas. J Exp Bot 44 (in press)Google Scholar
  22. Schreiber L, Schönherr J (1993b) Mobilities of organic compounds in reconstituted cuticular wax of barley leaves: Determination of diffusion coefficients. Pestic Sci 38: 353–361CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Markus Riederer
    • 1
  • Reinhard Jetter
    • 1
  • Claus Markstädter
    • 1
  • Lukas Schreiber
    • 1
  1. 1.Physiologische ÖkologieUniversität KaiserslauternKaiserslauternFederal Republic of Germany

Personalised recommendations