Skip to main content

Global Atmospheric Modelling

  • Conference paper
Long-Term Climatic Variations

Part of the book series: NATO ASI Series ((ASII,volume 22))

  • 211 Accesses

Abstract

The history of the numerical modelling of atmospheric motion is intimately linked with the history of weather forecasting which started with World War I. The first try in numerical weather prediction was Richardson (1922)’s, who both invented finite difference modelling and… massively parallel processing, as he viewed a network of parallel personal computers (the brains and hands of individuals) passing and receiving individually processed information to their neighbours in a huge mass-production room. With regard to parallel processing, he was in advance by three quarters of a century. With regard to numerical analysis, he was too early by a quarter of a century: his calculation failed because he did not know about the CFL criterion and choose a time step too large for his horizontal resolution. One must add that he envisioned an associated optimum data coverage by dreaming of a Cartesian observing station network in exact coincidence with the computational grid: which promised a brilliant future to the small city of Romorantin, in the centre of France, as a major meteorological observing station.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arakawa, A. (1966): Computational design for long-term numerical integration of the equations of fluid motion. Part I: Two-dimensional incompressible flow. J. Comp. Phys., 1, 119–143.

    Article  Google Scholar 

  • Arakawa, A., W. H. Schubert (1974): Interaction of cumulus cloud ensemble with the large- scale environment. J. Atmos. Sci., 31, 674–701.

    Article  Google Scholar 

  • Basdevant, C., B. Legras, R. Sadourny, M. Béland (1981): A study of barotropic model flows: Intermittency, waves and predictability. J. Atmos. Sci., 38, 2305–2326.

    Article  Google Scholar 

  • Betts, A. K. (1986): New convective adjustment scheme. Part I. Observational and theoretical bases. Quart. J. Roy. Meteor. Soc., 112, 677–691.

    Google Scholar 

  • Betts, A. K., M. Miller (1986): New convective adjustment scheme. Part II. Single column test using GATE wave and BOMEX, APEX and Arctic Air Mass data sets. Quart. J. Roy. Met. Soc., 112, 693–709.

    Google Scholar 

  • Cess, R.D., G.L. Potter, J.P. Blanchet, G.J. Boer, A.D. Del Genio, M. Déqué, V. Dymnikov, V. Galin, W.L. Gates, S.J. Ghan, J.T. Kiehl, A.A. Lacis, H. Le Treut, Z.X. Li, X.Z. Liang, B.J. McAvaney, V.P. Meleshko, J.F.B. Mitchell, J.J. Morcrette, D.A. Randall, L. Rikus, E. Roeckner, J.F. Royer, U. Schlese, D.A. Sheinin, A. Slingo, A.P. Sokolov, K.E. Taylor, W.M. Washington, R.T. Wetherald, I. Yagai M.H. Zhang, 1990: Intercomparison and interpretation of climate feedback processes in nineteen atmospheric general circulation models. J. Geophys. Res.. 95. 16,601–16,615.

    Google Scholar 

  • Courtier, Ph., C. Freydier, J.F. Geleyn, F. Rabier,M. Rochas (1991): The ARPÈGE Project at Météo France. In: Numerical Methods in Atmospheric Models, II, 193–231, European Centre for Medium Range Weather Forecasts Seminar Proceedings.

    Google Scholar 

  • Held, I.M., A.Y. Hou (1980): Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515–533.

    Article  Google Scholar 

  • Hortal, M., A.J. Simmons (1991): Use of reduced Gaussian grids in spectral models. Mon. Wea. Rev., 119, 1057–1074.

    Article  Google Scholar 

  • Krishnamurti, T.N. (1969): An experiment in numerical prediction in equatorial latitudes. Quart. J. Roy. Meteor. Soc., 95, 594–620.

    Article  Google Scholar 

  • Mesinger, F., Z.I. Janjic, S. Mickovic, D. Gavrilov, D.G. Deaven (1988): The step-mountain coordinate: model description and performance for cases of Alpine lee cyclogenesis and for a case of Appalachian redevelopment. Mon. Wea. Rev., 116, 1493–1518.

    Article  Google Scholar 

  • Manabe, S., R.F. Strickler (1964): Thermal equilibrium of the atmosphere with the convective adjustment. J. Atmos. Sci., 21, 361–385.

    Article  Google Scholar 

  • Mellor, G.L., T. Yamada (1974): A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 1791–1806.

    Article  Google Scholar 

  • Morcrette, J.-J., L. Smith and Y. Fouquart (1986): Pressure and temperature dependence of the absorption in longwave radiation parameterizations. Beitr. Phys. Atmosph., 59, 455–468.

    Google Scholar 

  • Orszag, S.A. (1970): Transform method for calculation of vector-coupled sums: application to the spectral form of the voticity equation. J. Atmos. Sci., 27, 890–895.

    Article  Google Scholar 

  • Phillips, N.A. (1957): A coordinate system having some special advantages for numerical forecasting. J. Meteorol., 14, 184–185.

    Article  Google Scholar 

  • Prather, (1988): Numerical advection by conservation of second-order moments. J. Geophys. Res., 91, 6671–6681.

    Google Scholar 

  • Richardson, L.F. (1922): Weather prediction by numerical process. Cambridge University Press, 236 pp.

    Google Scholar 

  • Robert, J. Sommeria (1991): Statistical equilibrium states for two-dimensional flows. J. Fluid Mech., 229, 291–310.

    Article  Google Scholar 

  • Robert, A.J. (1982): A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorologicall equations. J. Meteor. Soc. Japan, 60, 319–324.

    Google Scholar 

  • Sadourny, R., A. Arakawa, Y. Mintz (1968): Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid on the sphere. Mon. Wea. Rev., 96, 351–356.

    Article  Google Scholar 

  • Sadourny, R. (1975a): The dynamics of finite-difference models of the shallow water equations. J. Atmos. Sci., 32, 680–689.

    Article  Google Scholar 

  • Sadourny, R. (1975b): Compressible model flows on the sphere. J. Atmos. Sci., 32, 2103–2110.

    Article  Google Scholar 

  • Sadourny, R., C. Basdevant (1985): Parameterization of sub-grid scale barotropic and baroclinic eddies: Anticipated Potential Vorticity Method. J. Atmos. Sci., 42, 1353–1363.

    Article  Google Scholar 

  • Schmidt, F. (1977): Variable fine mesh in spectral global model. Beitr. Phys. Atmos., 50, 211–217.

    Google Scholar 

  • Sharma, O.P., H. Upadhyaya, Th. Braine-Bonnaire, R. Sadourny (1987): Experiments on regional forecasting using a stretched-coordinate general circulation model. J. Meteorol. Soc. Japan, Special Volume on Short- and Medium-Range Numerical Weather Prediction.

    Google Scholar 

  • Simmons, A, D. Burridge (1981): An energy and angular momentum conserving vertical finite difference scheme in hybrid vertical coordinate. Mon. Wea. Rev., 109, 758–766.

    Article  Google Scholar 

  • Smagorinsky, J. (1963): General circulation experiments with the primitive equations. I. The basic experiment. Mon. Wea. Rev., 91, 99–164.

    Google Scholar 

  • Staniforth, A.N., H.L. Mitchell (1978): A variable-resolution finite-element technique for regional forecasting with the primitive equations. Mon. Wea. Rev., 106, 439–447.

    Article  Google Scholar 

  • Sundqvist, H. (1978): Parametrisation for non convective condensation including prediction of cloud water content. Quart. J. Roy. Meteor. Soc., 104, 677–690.

    Article  Google Scholar 

  • Tiedtke, M. (1989): Comprehensive mass flux scheme for cumulus parametrisation in large- scale models. Mon. Wea. Rev., 117, 1779–1800.

    Google Scholar 

  • Williamson, D. (1968): Integration of the barotropic vorticity equation on a spherical geodesic grid. Tellus, 20, 642–653.

    Article  Google Scholar 

  • White, A.A., R.A. Bromley (1988) : A new set of dynamical equations for use in numerical weather prediction and global climate models. Meteorological Office, Met O 13 Branch memo.

    Google Scholar 

  • Zhu, Z., J. Thuburn, B.J. Hoskins, P.H. Haynes (1992): A vertical finite difference scheme based on a hybrid s-q-p coordinate. Mon. Wea. Rev., 120, 851–862.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sadourny, R. (1994). Global Atmospheric Modelling. In: Duplessy, JC., Spyridakis, MT. (eds) Long-Term Climatic Variations. NATO ASI Series, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79066-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79066-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79068-3

  • Online ISBN: 978-3-642-79066-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics