Advertisement

OGCM-constraints to PM’s

  • M. Lautenschlager
  • E. Maier-Reimer
Conference paper
Part of the NATO ASI Series book series (volume 22)

Abstract

We examined the response of our ocean models of physical circulation and geochemical tracer distributions on atmospheric glacial forcing. The CLIMAP [1981] sea surface temperature (SST) was taken directly as a boundary condition. The windstress and freshwater flux were derived from the ice age response of an atmospheric general circulation model (AGCM). Near the surface, the ocean response in temperature and circulation reflects primarily the imposed glacial forcing fields. The simulated deep ocean response, especially in the North Pacific, is in conflict with the observational evidence. The glacial changes in the physical ocean circulation appear to be qualitatively as derived from sediment cores, but, probably, highly overestimated. The misfit between model and data is established clearly in the distribution of δ 13 C, where a direct comparison with sediment core data is possible. The simulated AGCM freshwater flux, which is linked for example by the evaporation to the imposed SST field, is suspected to be the most probable reason for this conflict.

Keywords

Last Glacial Maximum Atmospheric General Circulation Model Ocean General Circulation Model Thermohaline Circulation Freshwater Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bacastow, R. and E. Maier-Reimer, 1990: Ocean - circulation model of the carbon cycle. Climate Dynamics 4, 95–126.CrossRefGoogle Scholar
  2. Boyle, E. A. and L. D. Keigwin, 1987: North Atlantic thermohaline circulation during the last 20 000 years: Link to high latitude surface temperature. Nature 330, 35–40.CrossRefGoogle Scholar
  3. Broccoli, A. J. and S. Manabe, 1987: The influence of continental ice, atmopsheric CO2, and land albedo on the climate of the last glacial maximum. Climate Dynamics 1, 87–99.CrossRefGoogle Scholar
  4. Broecker, W. S., T.-H..Peng, J. Jouzel and G. Russel, 1990: The magnitude of global fresh-water transports of importance to ocean circulation. Climate Dynamics, 4, 73–79.CrossRefGoogle Scholar
  5. Broecker, W. S., M. Andree, G. Bonani, W. Wolfli, H. Oeschger, M. Klas, A. Mix and W. Curry, 1988: Preliminary estimates for the radiocarbon age of deep water in the glacial ocean. Paleocean. 3, 659–669.CrossRefGoogle Scholar
  6. Broecker, W. S., 1986: Oxygen isotope constraints on surface ocean temperatures. Quat. Res. 26, 121–134.CrossRefGoogle Scholar
  7. Broecker, W. S., D. M. Peteet and D. Rind, 1985: Does the ocean-atmosphere system have more than one stable mode of operation? Nature 315, 21–26.CrossRefGoogle Scholar
  8. Bryan, F., 1986: High-latitude salinity effects and interhemispheric thermohaline circulations. Nature 323, 301–304.CrossRefGoogle Scholar
  9. Bryan, K., S. Manabe, and R. C. Pacanowski, 1975: A global ocean-atmosphere climate model Part II: The oceanic circulation. J. Phys. Oceanogr. 5, 30–46CrossRefGoogle Scholar
  10. Chappell, J. and N. J. Shackleton, 1986: Oxygen isotopes and sea level. Nature 324, 137–140.CrossRefGoogle Scholar
  11. Chen, M.-T., J. Imbrie and W. L. Prell, 1991: Estimating sea-surface temperatures from tropical Pacific planktonic foraminifers: Comparison of Imbrie-Kipp method and modern analog technique. EOS, Transactions, AGU, Spring Meeting 1991, Vol. 72, No. 17, p. 157.Google Scholar
  12. CLIMAP Project Members, 1981: Seasonal reconstruction of the earth’s surface at the last glacial maximum. Geol. Soc. Amer. Map Chart. Ser., MC-36.Google Scholar
  13. Crowley, T. J., 1983: Calcium-carbonate preservation patterns in the central North Atlantic during the last 150,000 years. Mar. Micropaleontol. 6, 97–129.CrossRefGoogle Scholar
  14. Curry, W. B., J. C. Duplessy, L. D. Labeyrie and N. J. Shackleton, 1988: Changes in the distribution of δ13C of deep water £CO2 between the last glaciation and the Holocene. Paleocean. 3, 317–341.CrossRefGoogle Scholar
  15. Diimenil, L. and U. Schlese, 1987: Description of the general circulation model. From: Climate simulations with the T21 - model in Hamburg, Ed.: G. Fischer, Meteor. Inst. Large Scale Atmosph. Model. Rep. No. 1.Google Scholar
  16. Duplessy, J. C., L. Labeyrie, A. Jullet-Leclerc, F. Maitre, J. Duprat and M. Sarnthein, 1991: Surface salinity reconstruction of the North Atlantic Ocean during the last glacial maximum. Oceanologica Acta 14, 311–324.Google Scholar
  17. Duplessy, J. C., N. J. Shackleton, R. G. Fairbanks, L. Labeyrie, D. Oppo and N. Kallel, 1988: Deepwater source variations during the last climate cycle and their impact on on the global deepwater circulation. Paleocean. 3, 343–360.CrossRefGoogle Scholar
  18. Duplessy, J. C. and N. J. Shackleton, 1985: Response of global deep-water circulation to Earth’s climatic change 135 000 - 107 000 years ago. Nature 316, 500–507.CrossRefGoogle Scholar
  19. Duplessy, J. C., 1982: Glacial to interglacial contrasts in the northern Indian Ocean. Nature 295, 494–498.CrossRefGoogle Scholar
  20. Duplessy, J. C., J. Moyes and C. Pujol, 1980: Deep water formation in the North Atlantic Ocean during the last ice age. Nature 286, 476–482.CrossRefGoogle Scholar
  21. Gordon, A. L., 1986: Interocean Exchange of Thermocline Water. J. Geoph. Res. 91,C4, 5037–5046.Google Scholar
  22. Joussaume, S., 1989: Simulations du climat du dernier maximum glaciire à l’aide d’un modèle de circulation générale de l’atmosphère incluant une modélisation du cycle des isotopes de l’eau et des poussières d’origine désertique. Thèse de Doctorat d’Etat, 507p., Univ. of Paris VI, France.Google Scholar
  23. Keffer, T., D. G. Martinson and B. H. Corliss, 1988: The position of the Gulf Stream during Quaternary glaciations. Science 241, 440–442.CrossRefGoogle Scholar
  24. Kroopnick, P. M., 1985: The distribution of 13C of ∑CO2 in the World Oceans. Deep Sea Research 32, 57–84CrossRefGoogle Scholar
  25. Kutzbach, J. E. and P. J. Guetter, 1986: The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18000 years. J. Atmos. Sci., 43, 1726–1759.CrossRefGoogle Scholar
  26. Kutzbach, J. E. and H. E. Wright, 1985: Simulation of the climate 18 000 years BP: Results for the North American/North Atlantic/European sector and comparison with the geological record of North America. Quatern. Sci. Rev. 4, 147–187.CrossRefGoogle Scholar
  27. Labeyrie, L. D., J. C. Duplessy and P. L. Blanc, 1987: Variations in mode of formation and temperature of oceanic deep waters over the the past 125 000 years. Nature 327, 477–482.CrossRefGoogle Scholar
  28. Lai, D. and H. E. Suess, 1983: Some comments on the exchange of CO2 across the air-sea interface. Journ. Geophys. Res. 88, 3643–3646.CrossRefGoogle Scholar
  29. Lautenschlager, M., U. Mikolajewicz, E. Maier-Reimerand C. Heinze, 1992: Application of Ocean Models for the Interpretation of Atmospheric General Circulation Model Experiments on the Climate of the Last Glacial Maximum. Paleoceanography 7, 769–782.CrossRefGoogle Scholar
  30. Lautenschlager, M. and K. Herterich, 1990: Atmospheric Response to Ice-Age Conditions Climatology near the Earth’s Surface. Journ. Geophys. Res. 95, 22547–22557.CrossRefGoogle Scholar
  31. Louis, J.-F., 1984: ECMWF forecast model: physical parameterization. ECMWF Research Department, Research manual 3.Google Scholar
  32. Luther, M. E., J. J. O’Brien and W. L. Prell, 1990: Variability in Upwelling Fields in the Northwestern Indian Ocean, 1. Model Experiments for the Past 18,000 Years. Paleoceanography 5, 433–445.CrossRefGoogle Scholar
  33. Maier-Reimer, E., U. Mikolajewicz and K. Hasselmann, 1993: Mean Circulation of the Hamburg LSG OGCM and its Sensitivity to the Thermohaline Surface Forcing. J.Phys. Oceanogr. 23, 731–757.Google Scholar
  34. Maier-Reimer, E. and R. Bacastow, 1990: Modelling of Geochemical Tracers in the Ocean.In: M.Schlesinger (ed.) Climate-Ocean Interaction, Kluwer press, Dordrecht, pp.233–267.Google Scholar
  35. Maier-Reimer, E. and K. Hasselmann, 1987: Transport and storage of CO2 in the ocean an inorganic ocean-circulation carbon cycle model. Climate Dynamics 2, 63–90.CrossRefGoogle Scholar
  36. Manabe, S. and R. J. Stouffer, 1988: Two stable equilibria of a coupled ocean-atmosphere model. Journ. Climate 1, 841–866.Google Scholar
  37. McIntyre, A., N. G. Kipp, A. W. H. Be, T. Crowley, T. Kellogg, J. V. Gardner, W. L. Prell and W. F. Ruddiman, 1976: Glacial North Atlantic 18 000 years ago: A CLIMAP reconstruction. Geol. Soc. Amer. Mem. 145, 43–76.Google Scholar
  38. Miller, J. R. and G. L. Russell, 1990: Oceanic freshwater transport during the last glacial maximum. Paleoceanography 5, 397–407.CrossRefGoogle Scholar
  39. Miller, J. R. and G. L. Russell, 1989: Ocean heat transport during the last glaciation. Paleocean. 4, 141–155.CrossRefGoogle Scholar
  40. Oppo, D. W. and R. G. Fairbanks, 1987: Variability in the deep and intermediate water circulation of the Atlantic during the last 25 000 years: Northern Hemisphere modulation of the Southern Ocean. Earth Planet. Sci. Lett. 86, 1–15.Google Scholar
  41. Ostlund, H. G. and M. Stuiver, 1980: GEOSECS Pacific radiocarbon. Radiocarbon 22, 25–33.Google Scholar
  42. Prell, W. L., 1985: The stability of low-latitude sea-surface temperatures: An evaluation of the CLIMAP reconstruction with emphasis on the positive SST anomalies. U.S. Dept. Energy Cont. Rep., Cont. No. DE-AC02-83ER60167.Google Scholar
  43. Rind, D., 1987: Components of the Ice Age circulation. J. Geophys. Res. 92, D4, 4241–4281.Google Scholar
  44. Rind, D. and D. Peteet, 1985: Terrestrial conditions at the last glacial maximum and CLIMAP sea-surface temperature estimates: Are they consistent? Quat. Res. 24, 1–22.Google Scholar
  45. Sarnthein, M., K. Winn, J. C. Duplessy and M. R. Fontugne, 1988: Global variations of surface ocean productivity in low and mid latitudes: influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21 000 years. Paleocean. 3, 361–399.CrossRefGoogle Scholar
  46. Sausen, R. K. Barthel and K. Hasselmann, 1988: Coupled ocean-atmosphere models with flux correction. Climate Dynamics 2, 145–163.CrossRefGoogle Scholar
  47. Shackleton, N. J., J. C. Duplessy, M. Arnold, P. Maurice, M. A. Hall and J. Cartlidge, 1988: Radiocarbon age of the last glacial Pacific deep water. Nature 335, 708–711.CrossRefGoogle Scholar
  48. Stommel, H., 1962: Thermohaline Convection with two stable regimes of flow. Tellus 13 224–230CrossRefGoogle Scholar
  49. Warren, B. A. 1983: Why is no deep water formed in the North Pacific? J.Mar. Res. 41 327–347Google Scholar
  50. Webster, P. N. and N. Streeten, 1978: Late Quaternary ice age climates of tropical Australia, interpretation and reconstruction. Quat. Res. 10, 279–309.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • M. Lautenschlager
    • 1
  • E. Maier-Reimer
    • 2
  1. 1.Deutsches Klimarechenzentrum GmbHHamburgGermany
  2. 2.Max-Planck-Institut für MeteorologieHamburgGermany

Personalised recommendations