Skip to main content

Pysics of the Ice Age Cycle

  • Conference paper
Long-Term Climatic Variations

Part of the book series: NATO ASI Series ((ASII,volume 22))

Abstract

During the last half of the Pleistocene epoch, beginning roughly 900,000 yrs ago, the variability evidenced in the climate system has been dominated by the 100 kyr ice age cycle first recognized by Broecker and Van Donk (1970). The sequence of events during this time has been markedly improved recently by employing the Milankovitch hypothesis of the origin of ice ages to refine our knowledge of their chronology! Various physical models of this long timescale climate oscillation have been proposed that may be distinguished either as “wet”, in the sense that they rely in large part upon internal forcing due to variation in the strength of the thermohaline circulation (e.g. Broecker and Denton, 1989) or as “dry”, in which case they posit a secondary role for the oceans. Following a brief review of developments in the area of ice age chronology, I will discuss recent and ongoing attempts to resolve the issue as to whether the ice age cycle is primarily a “wet” or a “dry” phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baksi, A.K., V. Hsu, M.O. McWilliams and E. Farrar, 1992,40Ar/39Ar dating of the Brunhes- Matuyama geomagnetic field reversal. Science, 256, 356–334.

    Google Scholar 

  • Berger, A., 1978, Long term variations of calorific insolation from the Earth’s orbital elements. Quat. Res., 9, 139–167.

    Article  Google Scholar 

  • Broecker, W.S. and J. Van Donk, 1970, Insolation changes, ice volumes and the 8180 record in deep sea cores. Rev. Geophys. Space Phys., 8, 169–198.

    Article  Google Scholar 

  • Broecker, W.S. and G.H. Denton, 1989, The role of ocean-atmosphere reorganizations in glacial cycles. Geochim. Cosmochim. Acta., 53, 2465–2501.

    Article  Google Scholar 

  • Budd, W.F. and I.N. Smith, 1981, The growth and retreat of ice sheets in response to orbital radiation changes, sea level, Ice and Climate Changes, IAHS Publ. 131, 369–409.

    Google Scholar 

  • Cox, Allan, R.R. Doell and G.B. Dalrymple, 1963, Geomagnetic polarity epochs and Pleistocene geochronometry. Nature, 198, 1049–1051.

    Article  Google Scholar 

  • De Angelis, M., N.I. Baskov and V.N. Petrov, 1987, Aerosol concentrations over the last climatic cycle (160 kyr) from an Antarctic ice core. Nature, 325, 318–321.

    Article  Google Scholar 

  • DeBlonde, G. and W.R. Peltier, 1991a, A one dimensional model of continental ice volume fluctuations through the Pleistocene: Implications for the origin of the mid-Pleistocene climate transition. J. Climate, 4, 318–344.

    Article  Google Scholar 

  • DeBlonde, G. and W.R. Peltier, 1991b, Simulations of continental ice sheet growth over the last glacial-interglacial cycle: experiments with a one-level seasonal energy balance model including realistic geography. J. Geophys. Res., 96, 9189–9215.

    Article  Google Scholar 

  • DeBlonde, G., W.R. Peltier and W.T. Hyde, 1992, Simulations of continental ice sheet growth over the last glacial-interglacial cycle: experiments with a one level seasonal energy balance model including seasonal ice-albedo feedback. Global and Planetary Change, 98, 37–55.

    Article  Google Scholar 

  • DeBlonde, G. and W.R. Peltier, 1993, Late Pleistocene ice age scenarios based upon observational evidence. J. Climate, 6, 709–727.

    Article  Google Scholar 

  • Hays, J.D., J. Imbrie and NJ. Shackleton, 1976, Variations in the Earth’s orbit: pacemaker of the ice ages. Science, 194, 1121–1132.

    Article  Google Scholar 

  • Heinrich, H., 1988, Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quat. Res., 29, 142–152.

    Article  Google Scholar 

  • Hyde, W.T. and W.R. Peltier, 1985, Sensitivity experiments with a model of the ice-age cycle: the response to harmonic forcing. J. Atmos. Sci., 42, 2170–2188.

    Article  Google Scholar 

  • Hyde, W.T. and W.R. Peltier, 1987, Sensitivity experiments with a model of the ice-age cycle: the response to Milankovitch forcing. J. Atmos. Sci., 44, 1351–1374.

    Article  Google Scholar 

  • Imbrie, J., N.J. Shackleton, N.G. Pisias, J.J. Morley, W.L. Prell, D.G. Martinson, J.D. Hays, A. Mclntyre and A.C. Mix, 1984, The orbital theory of Pleistocene climate: support from a revised chronology of the marine 8180 record. In Milankovitch and Climate, A. Berger and coeds., 269–305.

    Google Scholar 

  • Martinsen, D.G., N. Pisias, J.D. Hays, J. Imbrie, T.C. Moore and N.J. Shackleton, 1987, Age dating and orbital theory of the ice ages: development of a high resolution 0-300,000 - year chronostratigraphy. Quat. Res., 27, 1–30.

    Article  Google Scholar 

  • Milankovitch, M., 1941, Canon of insolation and the ice age problem, and glacial cycles, K. Serb. Acad. Beorg. Spec. Publ. 132.

    Google Scholar 

  • North, G.R., J.R. Mengel and D.A. Short, 1983, Simple energy balance model resolving the seasons and the continents: Application to the astronomical theory of the ice ages. J. Geophys. Res., 88, 6576–6586.

    Article  Google Scholar 

  • Oerlemans, J., 1980, Model experiments on the 100,000 year glacial cycle. Nature, 287, 430–432.

    Article  Google Scholar 

  • Peltier, W.R., 1974, The impulse response of a Maxwell earth. Rev. Geophys. and Space Phys., 12, 649–669.

    Article  Google Scholar 

  • Peltier, W.R., 1976, Glacial isostatic adjustment II. The inverse problem. Geophys. J.R. astron. Soc., 46, 669–706.

    Article  Google Scholar 

  • Peltier, W.R, 1982, Dynamics of the ice age earth. Adv. Geophys., 24, 1–146.

    Article  Google Scholar 

  • Peltier, W.R., 1985, The LAGEOS constraint on deep mantle viscosity: results from anew normal mode method for the inversion of viscoelastic relaxation spectra. J. Geophys. Res., 90, 9411–9421.

    Article  Google Scholar 

  • Peltier, W.R. and S. Marshall, 1993, Glacial terminations and terrigenous dust: experiments with a nonlinear ice sheet coupled energy balance model, J. Climate, submitted.

    Google Scholar 

  • Pollard, D., 1982, A simple ice sheet model yields realistic 100 kyr glacial cycles. Nature, 296, 334–338.

    Article  Google Scholar 

  • Pollard, D., 1983, A coupled climate - ice sheet model applied to the Quaternary ice ages. J. Geophys. Res., 88, 7705–7718.

    Article  Google Scholar 

  • Quinn, T.R., S. Tremaine and M. Duncan, 1991, A 3 million year integration of the Earth’s Orbit. Astronomical Journal, 101, 2287–2305.

    Article  Google Scholar 

  • Raymo, M.E., W.F. Ruddiman, N.J. Shackleton and D.W. Oppo, 1990, Evolution of global ice volume and Atlantic-Pacific 813C gradients over the last 2.5 M.Y. Earth and Planet. Science Lett., 97, 353–368.

    Google Scholar 

  • Shackleton, N.J. 1967, Oxygen isotope analysis and Pleistocene temperatures readdressed. Nature, 215, 15–17.

    Article  Google Scholar 

  • Shackleton, N.J. and M.A. Hall, 1989, Stable isotope history of the Pleistocene at ODP Site 677. K. Becker, H. Sakai et al., Eds., Proc. ODP Sci. Results, 3, College Station, Tx. Shackleton, N.J.

    Google Scholar 

  • A. Berger and W.R. Peltier, 1990, An alternative astronomical calibration of the lower Pleistocene timescale based upon ODP Site 677. Trans. Roy. Soc. Edinburgh; Earth Sciences, 81, 251–261.

    Google Scholar 

  • Tushingham, M. and W.R. Peltier, 1991, ICE-3G: A new global model of late Pleistocene deglaciation based upon geophysical predictions of post-glacial relative sea level change. J. Geophys. Res., 96, 4497–4523.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peltier, W.R. (1994). Pysics of the Ice Age Cycle. In: Duplessy, JC., Spyridakis, MT. (eds) Long-Term Climatic Variations. NATO ASI Series, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79066-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79066-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79068-3

  • Online ISBN: 978-3-642-79066-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics