Skip to main content

Atmospheric Photochemistry and Spectroscopy

  • Conference paper
Low-Temperature Chemistry of the Atmosphere

Part of the book series: NATO ASI Series ((ASII,volume 21))

Abstract

Photochemistry is the study of interactions between radiant energy and chemical species, and a fundamental understanding of photochemistry is essential for atmospheric chemists. All the chemistry that takes place in the atmosphere is in some form influenced by solar radiation, which initiates production of many key reactive species and loss of many otherwise stable molecules. Spectroscopy is the investigation of how strongly and at which wavelengths an atom or a molecule absorbs light. The spectroscopy of atmospheric molecules determines which molecule absorbs light in what region of the atmosphere, and hence influences the photochemistry of the atmosphere. Atmospheric photochemistry and spectroscopic detection of atmospheric species are the two main subjects of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Airborne Antarctic Ozone Experiment (AAOE) special issue (1989). J Geophys Res D 94(9) and (14)

    Google Scholar 

  • Airborne Arctic Stratospheric Expedition (AASE) special issue (1990). Geophys Res Lett 17: 313–564

    Google Scholar 

  • AASE-II issue (1993) Science 261: 1128–1158

    Google Scholar 

  • AASE-II special issue (in press, 1993) Geophys Res Lett

    Google Scholar 

  • Arpag KA, Johnston PV, Miller HL, Sanders RW, Solomon S (submitted, 1993 ) Observations of the stratospheric BrO column over Colorado, 40°N. J Geophys Res

    Google Scholar 

  • Burkholder JB, Talukdar RK, Ravishankara AR, Solomon S (in press, 1993) Temperature dependence of the HNO3 UV absorption cross sections. J Geophys Res D

    Google Scholar 

  • Burkholder JB, Wilson RR, Gierczak T, Talukdar RK, McKeen SA, Orlando JJ, Vaghjiani GL, Ravishankara AR (1991) Atmospheric fate of CF3Br, CF2Br2, CF2C1Br, and CF2BrCF2Br. J Geophys Res D 96: 5025–5043

    Article  CAS  Google Scholar 

  • Farman JC, Gardiner BG, Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal C10x/NOx interaction. Nature 315: 207–210

    Article  CAS  Google Scholar 

  • Fish DJ, Freshwater RA, Oldham DJ, Roscoe HK, Jones, RL (1992) Measurements of stratospheric composition using a star-pointing spectrometer. Quadrennial Ozone Symposium, Charlottesville, VA, U.S.A

    Google Scholar 

  • Herman JR (1979) The problem of nighttime stratospheric NO3. J Geophys Res 84: 6336–6338

    Article  CAS  Google Scholar 

  • Hinkley ED, Ku RT, Kelly PL (1976) In Hinkley ED (ed) Laser monitoring of the atmosphere. Springer-Verlag, New York, pp. 237–95

    Google Scholar 

  • Hubler G, Perner D, Platt U, Tonnissen A, Ehhalt DH (1984) Groundlevel OH radical concentration:new measurements by optical absorption. J Geophys Res D 89: 1309–1319

    Article  Google Scholar 

  • McKenzie RL, Johnston PV, McElroy CT, Kerr JB, Solomon S (1991) Altitude distributions of stratospheric constituents from ground-based measurements at twilight. J Geophys Res D 96: 15499–15511

    Article  Google Scholar 

  • Meier RR, Anderson DE Jr. (1982) Radiation field in the troposphere and stratosphere from 240–1000 nm-1. General analysis. Planet Space Sei 30: 923–933

    Google Scholar 

  • Mount GH (1992) The measurement of tropospheric OH by long path absorption. I. Instrumentation. J Geophys Res D 97: 2427–2444

    CAS  Google Scholar 

  • Mount GH, Sanders RW, Schmeltekopf AL, S.Solomon (1987) Visible spectroscopy at McMurdo Station, Antarctica. 1. Overview and daily variations of NO2 and O3, Austral spring, 1986. J Geophys Res D 92: 8320–8328

    Article  CAS  Google Scholar 

  • Perliski L, Solomon S (1993) On the evaluation of air mass factors for atmospheric nearultraviolet and visible absorption spectroscopy. J Geophys Res D 98: 10363–10374

    Article  Google Scholar 

  • Proffitt MH, McLaughlin RJ (1983) Fast-response dual-beam UV absorption ozone photometer suitable for use on stratospheric balloons. Rev Sei Inst 54: 1719–1728

    Article  CAS  Google Scholar 

  • Rattigan O, Lutman ER, Jones RL, Cox RA (1992a) Temperature dependent absorption cross sections of gaseous nitric acid and atmospheric photolysis rates of nitric acid. Ber Bunsenges Phys Chem 96: 399–404

    CAS  Google Scholar 

  • Rattigan O, Lutman ER, Jones RL, Cox RA, Clemitshaw K, Williams J (1992b) Corrigendum:Temperature dependent absorption cross sections of gaseous nitric acid and methyl nitrate. J Photochem Photobiol A: Chem 69: 125–126

    Google Scholar 

  • Rattigan O, Lutman ER, Jones RL, Cox RA, Clemitshaw K, Williams J (1992c) Temperature dependent absorption cross sections of gaseous nitric acid and methyl nitrate. J Photochem Photobiol 66: 313–326

    Article  CAS  Google Scholar 

  • Rigaud P, Naudet JP, Huguenin D (1983) Simultaneous measurements of vertical distributions of stratospheric NO3 and O3 at different periods of the night. J Geophys Res C 88: 1463–1467

    Article  CAS  Google Scholar 

  • Sanders RW, Solomon S, Smith JP, Perliski L, Miller HL, Mount GH, Keys JG, Schmeltekopf AL (submitted, 1993) Visible and near-ultraviolet spectroscopy at McMurdo Station, Antarctica. 9. Observations of OCIO from April-October 1991. J Geophys Res D

    Google Scholar 

  • Smith JP, Solomon S (1990) Atmospheric NO3. 3. Sunrise disappearance and the stratospheric profile. J Geophys Res D 95: 13819–13827

    Google Scholar 

  • Smith JP, Solomon S, Sanders RW, Miller HL, Perliski L, Keys JG, Schmeltekopf AL (1993) Atmospheric NO3. 4. Vertical profiles at middle and polar latitudes at sunrise. J Geophys Res D 98: 8983–8989

    Google Scholar 

  • Solomon S (1988) The mystery of the Antarctic ozone hole. Rev Geophys 26: 131–148

    Article  CAS  Google Scholar 

  • Solomon S, Schmeltekopf AL, Sanders RW (1987) On the interpretation of zenith sky absorption measurements. J Geophys Res D 92: 8311–8319

    Article  CAS  Google Scholar 

  • Talukdar RK, Vaghjiani GL, Ravishankara AR (1992) Photodissociation of bromocarbons at 193 nm, 222 nm, and 248 nm - quantum yields of Br atom at 298 K. J Chem Phys 96: 8194–8201

    Google Scholar 

  • Weaver A, Arpag K, Miller HL, Sanders RW, Solomon S (to be published, 1993 )

    Google Scholar 

  • Webster CR, May RD (1987) Simultaneous in situ measurements and diurnal variations of NO2, O3, jNO2, CH4, H2O, and CO2 in the 40- to 26-km region using an open path tunable diode laser spectrometer. J Geophys Res D 92: 11931–11950

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weaver, A., Ravishankara, A.R. (1994). Atmospheric Photochemistry and Spectroscopy. In: Moortgat, G.K., Barnes, A.J., Le Bras, G., Sodeau, J.R. (eds) Low-Temperature Chemistry of the Atmosphere. NATO ASI Series, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79063-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79063-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79065-2

  • Online ISBN: 978-3-642-79063-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics