Skip to main content

Gas Phase Homogeneous Kinetics

  • Conference paper
Low-Temperature Chemistry of the Atmosphere

Part of the book series: NATO ASI Series ((ASII,volume 21))

Abstract

Since one of our ultimate goals is to develop quantitative models which are applicable over a wide range of temperatures and pressures - a range often beyond that for which there are data – it is frequently necessary to fit and extrapolate from the rate data at hand. Even for bimolecular reactions, conventional Arrhenius expressions are generally valid for only a few hundred degrees, and the degree of curvature must be assessed. In other reactions, additional complications may arise, including pressure dependence and multi-channel chemically activated pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baulch, D.L., Drysdale, D.D., Duxbury, J., and Grant, S. (1976). Evaluated Kinetic Data for High Temperature Reactions, Vol. 3, Butterworths, London

    Google Scholar 

  • Benson, S.W. (1976) Thermochemical Kinetics, Wiley, New York, 2nd ed.,

    Google Scholar 

  • Brouard, M., MacPherson, M.T., and Pilling, M.J. (1989). Experimental and RRKM modeling study of the CH3 + H and CH3 + D reactive. J. Phys. Chem., 93: 4047

    Article  Google Scholar 

  • Chen, C-J, Back, M.H., and Back, R.A. (1975). The thermal decomposition of methane I. Kinetics of the primary decomposition to C2H6 + H2; rate constant for the homogeneous unimolecular dissociation of methane and its pressure dependence. Can. J. Chem, 53: 3580

    Article  CAS  Google Scholar 

  • Cohen, N., and Benson, S.W. (1987). Transition-state-theory calculations for reactions of OH with haloalkanes. J. Phys. Chem., 91: 162

    Article  CAS  Google Scholar 

  • Cohen, N., and Westberg, K.R. (1986). The use of transition-state theory to extrapolate rate coefficients for reactions of O atoms with alkanes. Int. J. Chem. Kinet., 18: 99

    Article  CAS  Google Scholar 

  • Gilbert, R.G., and Smith, S.C., (1990). Theory of Unimolecular and Recombination Reactions, Blackwell Scientific, Oxford

    Google Scholar 

  • Halstead, M.P., Konar, R.S., Leathard, D.A., Marshall, R.M., and Purnell, J.H. (1969). Selfinhibited pyrolysis of neopentane at small extents of reaction. Proc. Roy. Soc. ( London) Ser. A 310: 525

    Article  CAS  Google Scholar 

  • Kerr, J.A., and Parsonage, M.J. (1976). Evaluated Kinetic Data on Gas-Phase Hydrogen Transfer Reactions of Methyl Radicals, Betterworths, London

    Google Scholar 

  • Larson, C.W., Patrick, R., and Golden, D.M. (1984). Pressure and temperature dependence of unimolecular bond fission reaction: An approach for combustion modelers. Comb, and Flame, 58: 229

    Article  CAS  Google Scholar 

  • Michael, J.V., Keil, D.G., and Klemm, R.B. (1983). A resonance fluorescence kinetic study of oxygen atom & hydrocarbon reactions. Nineteenth Symposium ( International) on Combustion, The Combustion Institute, p. 39

    Google Scholar 

  • Pacey, P.D. (1973). The reaction of methyl radicals with neopentane. Can. J. Chem. 51: 2415

    Google Scholar 

  • Paraskevopoulos, G.; Irwin, R. S. J. (1984). The pressure dependence of the rate constant of the reaction of OH radicals with CO. Chem. Phys., 80: 259

    CAS  Google Scholar 

  • Rodgers, A. S. (1993). Extrapolating H-atom transfer rate constants via thermochemical kinetics: The effect of tunneling. J. Chem. Kinet., 25: 41

    Article  CAS  Google Scholar 

  • Smith, G.P., and Golden, D.M. (1978). Application of RRKM theory to the reaction of OH + NO2 + N2 →HONO2 + (1) and CIO + NO2 (2): A modified Gorin model transition state. Int. J. Chem. Kinet., 10: 489

    Google Scholar 

  • Smith, G.P., McEwen, A.B., Golden, D.M., Vaghjianai, G.L., Ravishankara, A.R., and Tully, F.P. Pressure and temperature dependence of OH(D) + CO reaction: Kinetics and RRKM calculations, to be published

    Google Scholar 

  • Stewart, P.N., Smith, G.P., and Golden, D.M. (1989). The pressure and temperature dependence of methane decomposition. Int. J. Chem. Kinet., 21: 923

    Google Scholar 

  • Tabagashi, K. and Bauer, S.H. (1979). The early stages of pyrolysis and oxidation of methane. Comb. Flame, 34: 63

    Google Scholar 

  • Troe, J. (1983). Theory of thermal unimolecular reactions in the fall-off range. I. Strong collision rate constants. Ber. Bunsenges. Phys. Chem., 87: 161

    CAS  Google Scholar 

  • Troe, J. (1983). Theory of thermal unimolecular reactions in the fall-off range. II. Weak collision rate constants. Ber. Bunsenges. Phys. Chem., 87: 169

    Google Scholar 

  • Troe, J. (1977). Theory of thermal unimolecular reactions at low pressures. II Strong collision rate constants. J. Chem. Phys., 66: 4758

    Article  CAS  Google Scholar 

  • Troe, J. (1979). Predictive possibilities for unimolecular rate theory. J. Phys. Chem. 83: 114

    Article  CAS  Google Scholar 

  • Tsang, W., and Hampson, R. F. (1986). Chemical kinetics data base for combustion chemistry. Part 1. Methane and related compounds. J. Phys. Chem. Ref. Data, 15: 1087

    Article  CAS  Google Scholar 

  • Tully, F.P., Drogege, A.T., Koszykowski, M.LO. and Melius, C.F. (1986). Hydrogen-atom abstraction from alkanes by OH. 2. Ethane. J. Phys. Chem. 90: 691

    Article  CAS  Google Scholar 

  • Tully, F.P., Koszykowski, M.L., and Binkley, S.J. (1985). Hydrogen-atom abstraction from alkanes. Twentieth Symposium ( International) on Combustion, The Combustion Institute, p. 715

    Google Scholar 

  • Wagner, A.F., and Wardlaw, D.M. (1988). Study of the recombination reaction CH3 + CH3→ C2H6. J. Phys. Chem., 92: 2462

    Article  CAS  Google Scholar 

  • Wallington, T.J., Neuman, D.M., and Kurylo, M.J. (1987). Kinetics of the gas phase reaction of hydroxyl radicals with ethane, benzene, and a series of halogenated benzenes over the temperature range 214–438K. Int. J. Chem. Kinet., 19: 725

    Article  CAS  Google Scholar 

  • Warnatz, J. (1984) In: Combustion Chemistry, Gardiner, W.C., (ed.), Springer-Verlay, New York, 243

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Golden, D.M. (1994). Gas Phase Homogeneous Kinetics. In: Moortgat, G.K., Barnes, A.J., Le Bras, G., Sodeau, J.R. (eds) Low-Temperature Chemistry of the Atmosphere. NATO ASI Series, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79063-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79063-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79065-2

  • Online ISBN: 978-3-642-79063-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics