Transport Across the Vacuolar Membrane in CAM Plants

  • J. A. C. Smith
  • J. Ingram
  • M. S. Tsiantis
  • B. J. Barkla
  • D. M. Bartholomew
  • M. Bettey
  • O. Pantoja
  • A. J. Pennington
Part of the Ecological Studies book series (ECOLSTUD, volume 114)


Close metabolic parallels exist between the processes of CO2 assimilation in C4 plants and in CAM plants. In both types of plant, a C4 cycle starts with the fixation of CO2 (as HCO3 ) by phosphoenolpyruvate carboxylase (PEPC) and concludes with the release or CO2 by decarboxylation of a C4 dicarboxylate anion (malate or aspartate). This C4 cycle is an ancillary pathway, in the sense that it does not mediate the net fixation of atmospheric CO2. It simply passes on this CO2, at greatly elevated concentration, to ribulose 1,5-bisphosphate carboxylase/oxygenase (RUBISCO) for assimilation through the standard C3 photosynthetic carbon reduction cycle.


Malic Acid Mesophyll Cell Crassulacean Acid Metabolism Plant Cell Environ Vacuolar Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams P, Thomas JC, Vernon DM, Bohnert HJ, Jensen RG (1992) Distinct cellular and organismic responses to salt stress. Plant Cell Physiol 33: 1215–1223Google Scholar
  2. Arata H, Iwasaki I, Kusumi K, Nishimura M (1992) Thermodynamics of malate transport across the tonoplast of leaf cells of CAM plants. Plant Cell Physiol 33: 873–880Google Scholar
  3. Barkla BJ, Zingarelli L, Blumwald E, Smith JAC (1995) Tonoplast Na+/H+ antiport activity and its energization by the vacuolar H+-ATPase in the halophytic plant Mesembryanthemum crystallinum. Plant Physiol (in press.)Google Scholar
  4. Bartholomew DM, Rees DJG, Rambaut A, Smith JAC (1995) Isolation and sequence analysis of a cDNA encoding the 16 kDa subunit of a vacuolar-type H+-ATPase from the CAM plant Kalanchoë daigremontiana (submitted for publication.)Google Scholar
  5. Bennett AB, Spanswick RM (1984) H +-ATPase activity from storage tissue of Beta vulgaris. II. H+/ATP stoichiometry of an anion-sensitive ATPase. Plant Physiol 74: 545–548PubMedCrossRefGoogle Scholar
  6. Berkelman T, Houtchens KA, DuPont FM (1994) Two cDNA clones encoding isoforms of the B subunit of the vacuolar ATPase from barley roots. Plant Physiol 104: 287–288PubMedCrossRefGoogle Scholar
  7. Bettey M, Smith JAC (1993) Dicarboxylate transport at the vacuolar membrane of the CAM plant Kalanchoë daigremontiana: sensitivity to protein-modifying and sulphydryl reagents. Biochim Biophys Acta 1152: 270–279PubMedCrossRefGoogle Scholar
  8. Boiler T, Wiemken A (1986) Dynamics of vacuolar compartmentation. Annu Rev Plant Physiol 37: 137–164CrossRefGoogle Scholar
  9. Bremberger C, Lüttge U (1992) Dynamics of tonoplast proton pumps and other tonoplast proteins of Mesembryanthemum crystallinum L. during the induction of crassulacean acid metabolism. Planta 188: 575–580CrossRefGoogle Scholar
  10. Bremberger C, Haschke H-P, Lüttge U (1988) Separation and purification of the tonoplast ATPase and pyrophosphatase from plants with constitutive and inducible crassulacean acid metabolism. Planta 175: 465–470CrossRefGoogle Scholar
  11. Buser-Suter C, Wiemken A, Matile P (1982) A malic acid permease in isolated vacuoles of a crassulacean acid metabolism plant. Plant Physiol 69: 456–459PubMedCrossRefGoogle Scholar
  12. Cross RL, Taiz L (1990) Gene duplication as a means for altering H+/ATP ratios during the evolution of F0F1 ATPases and synthases. FEBS Lett 259: 227–229PubMedCrossRefGoogle Scholar
  13. Davies JM, Poole RJ, Rea PA, Sanders D (1992) Potassium transport into plant vacuoles energized directly by a proton-pumping inorganic pyrophosphatase. Proc Natl Acad Sci USA 89: 11701–11705PubMedCrossRefGoogle Scholar
  14. Davies JM, Poole RJ, Sanders D (1993) The computed free energy change of hydrolysis of inorganic pyrophosphate and ATP: apparent significance for inorganic pyrophosphate-driven reactions of intermediary metabolism. Biochim Biophys Acta 1141: 29–36CrossRefGoogle Scholar
  15. Finbow ME, Harrison M, Jones P (1995) Ductin - a proton pump component, a gap junction channel and a neurotransmitter release channel. BioEssays 17: 247–255PubMedCrossRefGoogle Scholar
  16. Forgac M (1989) Structure and function of vacuolar class of ATP-driven proton pumps. Physiol Rev 69: 765–796PubMedGoogle Scholar
  17. Franco AC, Ball E, Lüttge U (1990) Patterns of gas exchange and organic acid oscillations in tropical trees of the genus Clusia. Oecologia 85: 108–114CrossRefGoogle Scholar
  18. Franco AC, Ball E, Lüttge U (1992) Differential effects of drought and light levels on accumulation of citric and malic acids during CAM in Clusia. Plant Cell Environ 15: 821–829CrossRefGoogle Scholar
  19. Gibson AC (1982) The anatomy of succulence. In: Ting IP, Gibbs M (eds) Crassulacean acid metabolism. American Society of Plant Physiologists, Rockville, pp 1–17Google Scholar
  20. Gogarten JP, Starke T, Kibak H, Fishmann J, Taiz L (1992) Evolution and isoforms of V-ATPase subunits. J Exp Biol 172: 137–147PubMedGoogle Scholar
  21. Hedrich R, Neher E (1987) Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles. Nature 329: 833–836CrossRefGoogle Scholar
  22. Holzenburg A, Jones PC, Franklin T, Pali T, Heimburg T, Marsh D, Findlay JBC, Finbow ME (1993) Evidence for a common structure for a class of membrane channels. Eur J Biochem 213: 21–30PubMedCrossRefGoogle Scholar
  23. Ingram J, Smith JAC (1995) Developmental regulation of NAD- and NADP-malic enzyme activities in leaves of the CAM plant Kalanchoë daigremontiana (submitted for publication.)Google Scholar
  24. Iwasaki I, Arata H, Kijima H, Nishimura M (1992) Two types of channels involved in the malate ion transport across the tonoplast of a crassulacean acid metabolism plant. Plant Physiol 98: 1494–1497PubMedCrossRefGoogle Scholar
  25. Jochem P, Lüttge U (1987) Proton transporting enzymes at the tonoplast of leaf cells of the CAM plant Kalanchoë daigremontiana. I. The ATPase. J Plant Physiol 129: 251–268Google Scholar
  26. Kinzel H (1989) Calcium in the vacuoles and cell walls of plant tissue. Forms of deposition and their physiological and ecological significance. Flora 182: 99–125Google Scholar
  27. Klink R, Lüttge U (1992) Quantification of visible structural changes of the leaf tonoplast of Mesembryanthemum crystallinum by freeze fracture replicas prepared during the C3-photosynthesis to CAM-transition. Bot Acta 105: 414–420Google Scholar
  28. Klink R, Haschke H-P, Kramer D, Lüttge U (1990) Membrane particles, proteins and ATPase activity of tonoplast vesicles of Mesembryanthemum crystallinum in the C3 and CAM state. Bot Acta 103: 24–31Google Scholar
  29. Lai S, Watson JC, Hansen JN, Sze H (1991) Molecular cloning and sequencing of cDNAs encoding the proteolipid subunit of the vacuolar H+-ATPase from a higher plant. J Biol Chem 266: 16078–16084PubMedGoogle Scholar
  30. Lüttge U (1987) Carbon dioxide and water demand: crassulacean acid metabolism (CAM), a versatile ecological adaptation exemplifying the need for integration in ecophysiological work. New Phytol 106: 593–629CrossRefGoogle Scholar
  31. Lüttge U (1988) Day-night changes of citric acid levels in CAM: phenomenon and ecophysiological significance. Plant Cell Environ 11: 445–451CrossRefGoogle Scholar
  32. Lüttge U (1993) The role of crassulacean acid metabolism (CAM) in the adaptation of plants to salinity. New Phytol 125: 59–71CrossRefGoogle Scholar
  33. Lüttge U, Ball E (1979) Electrochemical investigation of active malic acid transport at the tonoplast into the vacuoles of the CAM plant Kalanchoë daigremontiana. J Membr Biol 47: 401–422CrossRefGoogle Scholar
  34. Lüttge U, Nobel PS (1984) Day-night variations in malate concentration, osmotic pressure, and hydrostatic pressure in Cereus validus. Plant Physiol 75: 804–807PubMedCrossRefGoogle Scholar
  35. Lüttge U, Smith JAC, (1984) Mechanism of passive malic-acid efflux from vacuoles of the CAM plant Kalanchoë daigremontiana. J Membr Biol 81: 149–158CrossRefGoogle Scholar
  36. Lüttge U, Smith JAC, Osmond CB, Marigo G (1981) Energetics of malate accumulation in the vacuoles of Kalanchoë tubiflora. FEBS Lett 126: 81–84CrossRefGoogle Scholar
  37. Lüttge U, Smith JAC, Marigo G (1982) Membrane transport, osmoregulation, and the control of CAM. In: Ting IP, Gibbs M (eds) Crassulacean acid metabolism. American Society of Plant Physiologists, Rockville, pp 69–91Google Scholar
  38. Maeshima M, Mimura T, Sato T (1994) Distribution of vacuolar H+-pyrophosphatase and a membrane integral protein in a variety of green plants. Plant Cell Physiol 35: 323–328Google Scholar
  39. Mandel MY, Moriyama Y, Hulmes JD, Pan Y-CE, Nelson H, Nelson N (1988) cDNA sequence encoding the 16 kDa proteolipid subunit of chromaffin granules implies gene duplication in the evolution of H+-ATPases. Proc Natl Acad Sci USA 85: 5521–5524PubMedCrossRefGoogle Scholar
  40. Manolson MF, Ouelette BFF, Filion M, Poole RJ (1988) cDNA sequence and homologies of the “57 kDa” nucleotide-binding subunit of the vacuolar ATPase from Arabidopsis. J Biol Chem 263: 17987–17994PubMedGoogle Scholar
  41. Marin B, Smith JAC, Lüttge U (1981) The electrochemical proton gradient and its influence on citrate uptake in tonoplast vesicles of Hevea brasiliensis. Planta 153: 486–493CrossRefGoogle Scholar
  42. Marquardt G, Lüttge U (1987) Proton transporting enzymes at the tonoplast of leaf cells of the CAM plant Kalanchoë daigremontiana. II. The pyrophosphatase. J Plant Physiol 129: 269–286Google Scholar
  43. Marquardt-Jarczyk G, Lüttge U (1990) Anion transport at the tonoplast of mesophyll cells of the CAM plant Kalanchoë daigremontiana. J Plant Physiol 136: 129–136Google Scholar
  44. Martinoia E, Rentsch D (1994) Malate compartmentation - responses to a complex metabolism. Annu Rev Plant Physiol Plant Mol Biol 45: 447–467CrossRefGoogle Scholar
  45. Matile P (1987) The sap of plants. New Phytol 105: 1–26CrossRefGoogle Scholar
  46. Murphy R, Smith JAC (1994a) A critical comparison of the pressure-chamber and pressure-probe techniques for estimating cell turgor pressure in leaves of Kalanchoë daigremontiana. Plant Cell Environ 17: 15–29CrossRefGoogle Scholar
  47. Murphy R, Smith JAC (1994b) Derivation of a weighted-average reflection coefficient for mesophyll cell membranes of Kalanchoë daigremontiana. Planta 193: 145–147CrossRefGoogle Scholar
  48. Narasimhan ML, Binzel ML, Perez-Prat E, Chen Z, Nelson DE, Singh NK, Bressan RA, Hasegawa PM (1991) NaCl regulation of tonoplast ATPase 70-kilodalton subunit mRNA in tobacco cells. Plant Physiol 97: 562–568PubMedCrossRefGoogle Scholar
  49. Nelson N (ed) (1995) Organellar proton-ATPases. Springer, Berlin Heidelberg New YorkGoogle Scholar
  50. Nishida K, Tominga O (1987) Energy-dependent uptake of malate into vacuoles isolated from CAM plant, Kalanchoë daigremontiana. J Plant Physiol 127: 385–393Google Scholar
  51. Nobel PS (1988) Environmental biology of agaves and cacti. Cambridge University Press, CambridgeGoogle Scholar
  52. Osmond CB (1976) Ion absorption and carbon metabolism in cells of higher plants. In: Lüttge U, Pitman MG (eds) Encyclopedia of plant physiology, new series, vol 2. Transport in plants II, part A, Cells. Springer, Berlin Heidelberg New York, pp 347–372Google Scholar
  53. Pantoja O, Gelli A, Blumwald E (1992) Characterization of vacuolar malate and K+ channels under physiological conditions. Plant Physiol 100: 1137–1141PubMedCrossRefGoogle Scholar
  54. Phillips RD (1980) Deacidification in a plant with crassulacean acid metabolism associated with anion-cation balance. Nature 287: 727–728CrossRefGoogle Scholar
  55. Phillips RD, Jennings DH (1976) Succulence, cations and organic acids in leaves of Kalanchoë daigremontiana grown in long and short days in soil and water culture. New Phytol 77: 599–611CrossRefGoogle Scholar
  56. Ratajczak R, Kemna I, Lüttge U (1994a) Characteristics, partial purification and reconstitution of the vacuolar malate transporter of the CAM plant Kalanchoë daigremontiana Hamet et Perrier de la Bâthie. Planta 195: 226–236CrossRefGoogle Scholar
  57. Ratajczak R, Richter J, Lüttge U (1994b) Adaptation of the tonoplast V-type H+-ATPase of Mesembryanthemum crystallinum to salt stress, C3-CAM transition and plant age. Plant Cell Environ 17: 1101–1112CrossRefGoogle Scholar
  58. Raven JA (1987) The role of vacuoles. New Phytol 106: 357–422Google Scholar
  59. Raven JA, Smith FA (1976) Nitrogen assimilation and transport in vascular plants in relation to intracellular pH regulation. New Phytol 76: 415–431CrossRefGoogle Scholar
  60. Rea PA, Poole RJ (1993) Vacuolar H+-translocating pyrophosphatase. Annu Rev Plant Physiol Plant Mol Biol 44: 157–180CrossRefGoogle Scholar
  61. Rea PA, Sanders D (1987) Tonoplast energization: two H+ pumps, one membrane. Physiol Plant 71: 131–141CrossRefGoogle Scholar
  62. Rentsch D, Martinoia E (1991) Citrate transport into barley mesophyll vacuoles - comparison with malate-uptake activity. Planta 184: 532–537CrossRefGoogle Scholar
  63. Rockel B, Ratajczak R, Becker A, Lüttge U (1994) Changed densities and diameters of intra-membrane tonoplast particles of Mesembryanthemum crystallinum in correlation with NaCl-induced CAM. J Plant Physiol 143: 318–324Google Scholar
  64. Rona J-P, Pitman MG, Lüttge U, Ball E (1980) Electrochemical data on compartmentation into cell wall, cytoplasm, and vacuole of leaf cells in the genus Kalanchoë. J Membr Biol 57: 25–35CrossRefGoogle Scholar
  65. Ruess BR, Eller BM (1985) The correlation between crassulacean acid metabolism and water uptake in Senecio medley-woodii. Planta 166: 57–66CrossRefGoogle Scholar
  66. Rygol J, Winter K, Zimmermann U (1987) The relationship between turgor pressure and titratable acidity in mesophyll cells of intact leaves of a crassulacean-acid-metabolism plant, Kalanchoë daigremontiana. Planta 172: 487–493CrossRefGoogle Scholar
  67. Schulte PJ, Smith JAC, Nobel PS (1989) Water storage and osmotic pressure influences on the water relations of a dicotyledonous desert succulent. Plant Cell Environ 12: 637–648CrossRefGoogle Scholar
  68. Smith FA, Raven JA (1979) Intracellular pH and its regulation. Annu Rev Plant Physiol 30: 289–311CrossRefGoogle Scholar
  69. Smith JAC (1984) Water relations in CAM plants. In: Medina E (ed) Physiological ecology of CAM plants. CIET (Unesco-IVIC), Caracas, pp 30–51Google Scholar
  70. Smith JAC (1987) Vacuolar accumulation of organic acids and their anions in CAM plants. In: Marin B (ed) Plant vacuoles: their importance in solute compartmentation and their applications in plant biotechnology. Plenum, New York, pp 79–87Google Scholar
  71. Smith JAC, Bryce JH (1992) Metabolite compartmentation and transport in CAM plants. In: Tobin AK (ed) Plant organelles. Cambridge University Press, Cambridge, pp 141–167Google Scholar
  72. Smith JAC, Lüttge U (1985) Day-night changes in leaf water relations associated with the rhythm of crassulacean acid metabolism in Kalanchoë daigremontiana. Planta 163: 272–282CrossRefGoogle Scholar
  73. Smith JAC, Marigo G, Lüttge U, Ball E (1982) Adenine-nucleotide levels during crassulacean acid metabolism and the energetics of malate accumulation in Kalanchoë tubiflora. Plant Sci Lett 26: 13–21CrossRefGoogle Scholar
  74. Smith JAC, Griffiths H, Lüttge U, Crook CE, Griffiths NM, Stimmel K-H (1986) Comparative ecophysiology of CAM and C3 bromeliads. IV. Plant water relations. Plant Cell Environ 9: 395–410CrossRefGoogle Scholar
  75. Smith JAC, Schulte PJ, Nobel PS (1987) Water flow and water storage in Agave deserti: osmotic implications of crassulacean acid metabolism. Plant Cell Environ 10: 639–648CrossRefGoogle Scholar
  76. Starke T, Linkila TP, Gogarten JP (1991) Two separate genes encode the catalytic 70 kDa V-ATPase subunit in Psilotum and Equisetum. Z Naturforsch 46c: 613–620Google Scholar
  77. Steudle E, Smith JAC, Lüttge U (1980) Water-relation parameters of individual mesophyll cells of the crassulacean acid metabolism plant Kalanchoë daigremontiana. Plant Physiol 66: 1155–1163PubMedCrossRefGoogle Scholar
  78. Stewart PA (1983) Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 61: 1444–1464PubMedCrossRefGoogle Scholar
  79. Struve I, Lüttge U (1987) Characteristics of MgATP2−-dependent electrogenic proton transport in tonoplast vesicles of the facultative crassulacean-acid-metabolism plant Mesembryanthemum crystallinum L. Planta 170: 111–120CrossRefGoogle Scholar
  80. Struve I, Weber A, Lüttge U, Ball E, Smith JAC (1985) Increased vacuolar ATPase activity correlated with CAM induction in Mesembryanthemum crystallinum and Kalanchoë blossfeldiana cv. Tom Thumb. J Plant Physiol 117: 451–468Google Scholar
  81. Struve I, Rausch T, Bernasconi P, Taiz L (1990) Structure and function of the promoter of the carrot V-type H+-ATPase catalytic subunit gene. J Biol Chem 265: 7927–7932PubMedGoogle Scholar
  82. Sze H, Ward JM, Lai S, Perera I (1992) Vacuolar-type H+-translocating ATPases in plant endomembranes: subunit organization and multigene families. J Exp Biol 172: 123–135PubMedGoogle Scholar
  83. Tsiantis MS, Bartholomew DM, Smith JAC (1995) Salt regulation of transcript levels for the 16 kDa subunit of a leaf vacuolar H+-ATPase in the halophyte Mesembryanthemum crystallinum (submitted for publication.)Google Scholar
  84. Walter H (1960) Einführung in die Phytologie, vol 3: Grundlagen der Pflanzenverbreitung. 1. Standortslehre (analytisch-ökologische Geobotanik), 2nd edn. Ulmer, StuttgartGoogle Scholar
  85. Wan CY, Wilkins TA (1994) Isolation of multiple cDNAs encoding the vacuolar H+-ATPase subunit B from developing cotton (Gossypium hirsutum L.) ovules. Plant Physiol 106: 393–394PubMedCrossRefGoogle Scholar
  86. Ward JM, Sze H (1992) Subunit composition and organization of the vacuolar H+-ATPase from oat roots. Plant Physiol 99: 170–179PubMedCrossRefGoogle Scholar
  87. Warren M, Smith JAC, Apps DK (1992) Rapid purification and reconstitution of a plant vacuolar ATPase using Triton X-114 fractionation: composition and substrate kinetics of the H+-ATPase from the tonoplast of Kalanchoë daigremontiana. Biochim Biophys Acta 1106: 117–125PubMedCrossRefGoogle Scholar
  88. White PJ, Smith JAC (1989) Proton and anion transport at the tonoplast in crassulacean-acid-metabolism plants: specificity of the malate-influx system in Kalanchoë daigremontiana. Planta 179: 265–214CrossRefGoogle Scholar
  89. White PJ, Smith JAC (1992) Malate-dependent proton transport in tonoplast vesicles isolated from orchid leaves correlates with the expression of crassulacean acid metabolism. J Plant Physiol 139: 533–538Google Scholar
  90. White PJ, Marshall J, Smith JAC (1990) Substrate kinetics of the tonoplast H+-translocating inorganic pyrophosphatase and its activation by free Mg2 +. Plant Physiol 93: 1063–1070PubMedCrossRefGoogle Scholar
  91. Wilkins MB (1992) Circadian rhythms: their origin and control. New Phytol 121: 347–375CrossRefGoogle Scholar
  92. Wilkins TA (1993) Vacuolar H+-ATPase 69-kilodalton catalytic subunit cDNA from developing cotton (Gossypium hirsutum) ovules. Plant Physiol 102: 679–680PubMedCrossRefGoogle Scholar
  93. Willmer CM, Fricker MD (1995) Stomata, 2nd edn. Chapman and Hall, LondonCrossRefGoogle Scholar
  94. Wink M (1993) The plant vacuole: a multifunctional compartment. J Exp Bot 44 [Suppl]: 231–246Google Scholar
  95. Zimniak L, Dittrich P, Gogarten JP, Kibak H, Taiz L (1988) The cDNA sequence of the 69-kDa subunit of the carrot vacuolar H+-ATPase: homology to the beta-chain of F0F1-ATPase. J Biol Chem 263: 9102–9112PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • J. A. C. Smith
    • 1
  • J. Ingram
    • 1
  • M. S. Tsiantis
    • 1
  • B. J. Barkla
    • 1
  • D. M. Bartholomew
    • 1
  • M. Bettey
    • 1
  • O. Pantoja
    • 1
  • A. J. Pennington
    • 1
  1. 1.Department of Plant SciencesUniversity of OxfordOxfordUK

Personalised recommendations