The Evolution of Crassulacean Acid Metabolism

  • J. A. Raven
  • R. A. Spicer
Part of the Ecological Studies book series (ECOLSTUD, volume 114)


This paper takes a wide view of the evolution of CAM; in particular it addresses the question why CAM does what it does and why other CAM-like possibilities have not been used.


Crassulacean Acid Metabolism Plant Cell Environ Carbon Isotope Discrimination Cicer Arietinum Carbamoyl Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altesor A, Ezcurra E, Silva C (1992) Changes in photosynthetic metabolism during the early ontogeny of four cactus species. Acta Oecol 13: 777–785Google Scholar
  2. Amthor JS (1991) Respiration in a future, high-CO2 world. Plant Cell Environ 14: 13–20CrossRefGoogle Scholar
  3. Ash SR, Pigg KB (1991) A new Jurassic Isoetites (Isoetales) from the Wallowa Terrane in Hells Canyon, Oregon and Idaho. Am J Bot 78: 1636–1646CrossRefGoogle Scholar
  4. Atay S (1958) Über die Einwirkung der ätherischen Öle auf die Evaporation und Transpiration. Istanbul Univ Fen Fak Mecm Ser B 23: 143–170Google Scholar
  5. Atkinson DE (1992) Functional roles of urea synthesis in vertebrates. Physiol Zool 65: 243–267Google Scholar
  6. Audus LJ, Cheetham AN (1940) Investigations on the significance of ethereal oils in regulating leaf temperatures and transpiration rates. Ann Bot (New Ser) 4: 465–483CrossRefGoogle Scholar
  7. Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1987) Vostok ice core provides 160 000-year record of atmospheric CO2. Nature 329: 408–414CrossRefGoogle Scholar
  8. Behrensmeyer AK, Damuth JD, Di Michele WA, Potts R, Sues H-D, Wing SL (eds) (1992) Terrestrial ecosystems through time. University of Chicago Press, ChicagoGoogle Scholar
  9. Benzing DH (1989) The evolution of epiphytism. In: Lüttge U (ed) Vascular plants as epiphytes: evolution and ecophysiology. Springer, Berlin Heidelberg New York, pp 15–41Google Scholar
  10. Berner RA (1990) Atmospheric carbon dioxide levels over phanerozoic time. Science 249: 1382–1386PubMedCrossRefGoogle Scholar
  11. Berner RA (1993) Palaeozoic atmospheric CO2: importance of solar radiation and plant evolution. Science 249: 1382–1386CrossRefGoogle Scholar
  12. Berner RA, Canfield DE (1989) A new model for atmospheric oxygen over phanerozoic time. Am J Sci 289: 333–361PubMedCrossRefGoogle Scholar
  13. Björkman O (1975) Thermal stability of the photosynthetic apparatus in intact leaves. Carnegie Inst Washington Year Book 74: 748–751Google Scholar
  14. Björkman O, Badger MR, Armond PA (1978) Thermal acclimation of photosynthesis: effect of temperature on photosynthetic characteristics of the photosynthetic apparatus in Nerium oleander. Carnegie Inst Washington Year Book 77: 262–282Google Scholar
  15. Bocherens H, Fizet N, Cuif JP, Jaeger J-J, Michard J-G, Mariotti A (1988) Premières mèsures d’abondances isotopiques naturelles en 13C et 15N de la matière organique fossile de Dinosaure. Application à l’étude du regimes alimentaire du genre Anatosaurus (Ornitischia, Hadrosauridae). C R Hebd Acad Sci, Paris, D Serie II 306: 1521–1525Google Scholar
  16. Bocherens H, Friis EM, Mariotti A, Pedersen KR (1993) Carbon isotope abundances in Mesozoic and Coenozoic fossil plants: palaeoecological implications. Lethaia 26: 347–358CrossRefGoogle Scholar
  17. Brandl R, Mann W, Sprinzl M (1992) Estimation of the monocot-dicot age through RNA sequences from the chloroplast. Proc R Soc Lond B 249: 13–17CrossRefGoogle Scholar
  18. Bremberger C, Lüttge U (1992) Dynamics of tonoplast proton pumps and other tonoplast proteins of Mesembryanthemum crystallinum L. during the induction of crassulacean acid metabolism. Planta 188: 575–580CrossRefGoogle Scholar
  19. Callaghan TV, Sonesson M, Somme L (1992) Responses of terrestrial plants and invertebrates to environmental change at high latitudes. Philos Trans R Soc Lond B 338: 279–288CrossRefGoogle Scholar
  20. Carpita NC (1985) Tensile strength of cell wall of living cells. Plant Physiol 79: 485–488PubMedCrossRefGoogle Scholar
  21. Cerling TE, Wang Y, Quade J (1993) Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature 361: 344–345CrossRefGoogle Scholar
  22. Cockburn W (1981) The evolutionary relationship between stomatal mechanism, crassulacean acid metabolism and C4 photosynthesis. Plant Cell Environ 4: 417–418CrossRefGoogle Scholar
  23. Cockburn W (1985) Variation in photosynthetic metabolism in vascular plants: CAM and related phenomena. New Phytol 101: 3–24CrossRefGoogle Scholar
  24. Cockburn W, McAulay A (1975) The pathway of carbon dioxide fixation in crassulacean plants. Plant Physiol 55: 87–89PubMedCrossRefGoogle Scholar
  25. Cockburn W, Ting IP, Sternberg LO (1979) Relationships between stomatal behavior and internal carbon dioxide concentration in crassulacean acid metabolism plants. Plant Physiol 63: 1029–1032PubMedCrossRefGoogle Scholar
  26. Crane PR (1993) Time for the angiosperms. Nature 366: 631–632CrossRefGoogle Scholar
  27. Crane PR, Lidgard S (1990) Angiosperm radiation and patterns of Cretaceous palynological diversity. In: Taylor PD, Larwood GP (eds) Major evolutionary radiations. Clarendon, Oxford, pp 377–407Google Scholar
  28. Crane PR, Donoghue MJ, Doyle JA, Friis EM (1989) Angiosperm origins. Nature 342: 131–132CrossRefGoogle Scholar
  29. Cushman JC, Bohnert HJ (1989a) Nucleotide sequence of the Ppc2 gene encoding a housekeeping isoform of phosphoenolpyruvate carboxylase from Mesembryanthemum crystallinum. Nucleic Acids Res 17: 6743–6744PubMedCrossRefGoogle Scholar
  30. Cushman JC, Bohnert HJ (1989b) Nucleotide sequence of the gene encoding a CAM specific isoform of phosphoenolpyruvate carboxylase from Mesembryanthemum crystallinum. Nucleic Acids Res 17: 6745–6746PubMedCrossRefGoogle Scholar
  31. Dennis DT, Turpin DH (eds) (1990) Plant physiology, biochemistry and molecular biology. Longman, HarlowGoogle Scholar
  32. Duarte CM (1992) Nutrient concentration of aquatic plants: patterns across species. Limnol Oceanogr 37: 882–889CrossRefGoogle Scholar
  33. Edwards DI, Seldon PA (1992) The development of early terrestrial ecosystems. Bot J Scotland 46: 337–365CrossRefGoogle Scholar
  34. Edwards GE, Walker DA (1983) C3, C4: mechanisms, and cellular and environmental regulation, of photosynthesis. Blackwell, OxfordGoogle Scholar
  35. Elleman CJ, Entwhistle PF (1982) A study of glands on cotton responsible for the high pH and cation concentration on the leaf surface. Ann Appl Biol 100: 553–558CrossRefGoogle Scholar
  36. Evans JR, Seeman JR (1989) The allocation of protein nitrogen in the photosynthetic apparatus: costs, consequences and control. In: Briggs WR (ed) Photosynthesis. A R Liss, New York, pp 183–205Google Scholar
  37. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40: 503–537CrossRefGoogle Scholar
  38. Frakes LA, Francis JE, Syktus JI (1992) Climate modes of the Phanerozoic. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  39. Fukuzawa H, Suzuki E, Komukai Y, Miyachi S (1992) A gene homologous to chloroplast carbonic anhydrase (icfA) is essential for photosynthetic carbon dioxide fixation by Synechococcus PCC 7942. Proc Natl Acad Sci USA 89: 4437–4441PubMedCrossRefGoogle Scholar
  40. Gerwick BG, Williams GJ III (1978) Temperature and water regulation of gas exchange of Opuntia polyacantha. Oecologia 35: 149–159CrossRefGoogle Scholar
  41. Gibson AC (1982) The anatomy of succulence. In: Ting IP, Gibbs M (eds) Crassulacean acid metabolism. American Society of Plant Physiologists, Rockville, pp 1–17Google Scholar
  42. Gill AM, Groves RH, Nobel IR (eds) (1981) Fire and the Australian biota. The Australian Academy of Science, CanberraGoogle Scholar
  43. Gravatt DA, Martin CE (1992) Comparative ecophysiology of five species of Sedum (Crassulaceae) under well-watered and drought-stressed conditions. Oecologia 92: 532–541CrossRefGoogle Scholar
  44. Griffiths H (1988) Crassulacean acid metabolism: a re-appraisal of physiological plasticity in form and function. Adv Bot Res 15: 43–92CrossRefGoogle Scholar
  45. Griffiths H (1989) Carbon dioxide concentrating mechanisms and the evolution of CAM in vascular epiphytes. In: Liittge U (ed) Vascular plants as epiphytes: evolution and ecophysiology. Springer, Berlin Heidelberg New York, pp 42–86Google Scholar
  46. Griffiths H (1992) Carbon isotope discrimination and the integration of carbon assimilation pathways in terrestrial CAM plants. Plant Cell Environ 15: 1051–1062CrossRefGoogle Scholar
  47. Hasebe M, Ito M, Kofuji R, Iwatsuki K, Veda K (1992) Phylogenetic relationships in Gnetophyta deduced from rbcL gene sequences. Bot Mag Tokyo 105: 385–391CrossRefGoogle Scholar
  48. Heilbronn A (1958) Über die Oberflächen-Aktivität ätherischer Öle und die biologische Bedeutung dieses Phänomens. Istanbul Univ Fen Fak Mecm Ser B 23: 131–141Google Scholar
  49. Holtum JAM, Summons R, Roeske CA, Comins N, O’Leary MH (1984) Oxygen-18 incorporation into malic acid during nocturnal carbon dioxide fixation in crassulacean acid metabolism. A new approach to estimating in vivo carbonic anhydrase activity. J Biol Chem 259: 6870–6881PubMedGoogle Scholar
  50. Jane JW, Urbauer JL, O’Leary MH, Cleland WW (1992) Mechanistic studies of phosphoenolpyruvate carboxylase from Zea mays with (Z)- and (E)-3-fluoro-phosphoenol-pyruvate as substrate. Biochemistry 31: 6432–6440CrossRefGoogle Scholar
  51. Johnston AM, Rave JA (1986) Dark fixation studies on the intertidal macroalga Ascophyllum nodosum (Phaeophyta). J Phycol 22: 78–83CrossRefGoogle Scholar
  52. Johnston AM, Raven JA (1989) Extraction, partial purification and characterization of phosphoenolpyruvate carboxykinase from Ascophyllum nodosum. J Phycol 25: 568–576CrossRefGoogle Scholar
  53. Keeley JA (1990) Photosynthetic pathways in freshwater aquatic plants. Trends Ecol Evol 5: 330–333PubMedCrossRefGoogle Scholar
  54. Keeley JE, Sandquist DR (1992) Carbon: freshwater plants. Plant Cell Environ 15: 1021–1035CrossRefGoogle Scholar
  55. Keeley JE, Mathews RP, Walker CM (1983) Diurnal acid metabolism in Isoetes howellii from a temporary pool and a permanent lake. Am J Bot 70: 854–857CrossRefGoogle Scholar
  56. Koundal KK, Sinha SK (1981) Malic acid exudation and photosynthetic characteristics in Cicer arietinum. Phytochemistry 20: 1251–1252CrossRefGoogle Scholar
  57. Koundal KR, Sinha SK (1983) Evaluation of the significance of malic acid secretion in chickpea. Physiol Plant 58: 189–192CrossRefGoogle Scholar
  58. Kutzbach JE, Gallimore RG (1989) Pangean climates. Megamonsoons of the megacontinent. J Geophys Res 94: 3341–3357CrossRefGoogle Scholar
  59. Lauter DJ, Munns DN (1986) Water loss via the glandular trichomes of chickpea (Cicer arietinum L.). J Exp Bot 37: 640–649CrossRefGoogle Scholar
  60. Lemon ER (ed) (1986) CO2 and plants. The responses of plants to rising levels of atmospheric carbon dioxide. American Association for the Advancement of Science, Washinton, DCGoogle Scholar
  61. Li WH, Gouy M, Wolfe KH, Sharp PM (1989) Angiosperm origins. Nature 342: 131–132CrossRefGoogle Scholar
  62. Long SR (1991) Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated? Plant Cell Environ 14: 729–739CrossRefGoogle Scholar
  63. Lüttge U (1987) Carbon dioxide and water demand: crassulacean acid metabolism (CAM), a versatile ecological adaptation exemplifying the need for integration in ecophysiological work. New Phytol 106: 593–629CrossRefGoogle Scholar
  64. Lüttge U (1989) Vascular epiphytes: setting the scene. In: Lüttge U (ed) Vascular plants as epiphytes. Springer, Berlin Heidelberg New York, pp 1–14CrossRefGoogle Scholar
  65. Marino BD, McElroy MB, Salawitch RJ, Spaulding WG (1992) Glacial-to-interglacial variations in the carbon isotope composition of atmospheric CO2. Nature 357: 461–466CrossRefGoogle Scholar
  66. Martin W, Gierl A, Saedler H (1989a) Molecular evidence for pre-Cretaceous angiosperm origins. Nature 339: 46–48CrossRefGoogle Scholar
  67. Martin W, Gierl A, Saedler H (1989b) Angiosperm origins. Nature 342: 132CrossRefGoogle Scholar
  68. Meyer CP, Canny MJ (1975) CO, storage in Eucalyptus oil glands: a hypothesis disproved. Aust J Plant Physiol 2: 647–658CrossRefGoogle Scholar
  69. Mooney HA, Björkman O, Collatz GJ (1978) Photosynthetic acclimation to temperature in the desert shrub Larrea divaricata. I. Carbon dioxide exchange characteristics of intact leaves. Plant Physiol 61: 406–410PubMedCrossRefGoogle Scholar
  70. Nelson T, Langdale JA (1992) Developmental genetics of C4 photosynthesis. Annu Rev Plant Physiol Mol Biol 43: 25–47CrossRefGoogle Scholar
  71. Nielsen SL, Gacia E, Sand-Jensen K (1991) Land plants of amphibious Littorella uniflora (L.) Aschers maintain utilization of CO2 from the sediment. Oecologia 88: 258–262CrossRefGoogle Scholar
  72. Nobel PS (1991) Achievable productivities of certain CAM plants: basis for high values compared with C3 and C4 plants. New Phytol 119: 183–205CrossRefGoogle Scholar
  73. O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20: 153–517CrossRefGoogle Scholar
  74. Osmond CB (1978) Crassulacean acid metabolism: a curiosity in context. Annu Rev Plant Physiol 29: 379–414CrossRefGoogle Scholar
  75. Osmond CB, Winter K, Ziegler H (1982) Functional significance of different pathways of photosynthesis. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Encyclopedia of plant physiology: New Series, vol 12B. Springer, Berlin Heidelberg New York, pp 479–547CrossRefGoogle Scholar
  76. Parrish JT, Ziegler AM, Scotese CR (1982) Rainfall patterns and the distribution of coals and evaporites in the Mesozoic and Cenozoic. Palaeogeogr Palaeoclimatol Palaeoecol 40: 67–101CrossRefGoogle Scholar
  77. Pedersen O, Sand-Jensen K (1992) Adaptations of submerged Lobelia dortmanna to aerial life form: morphology, carbon sources and oxygen dynamics. Oikos 65: 85–96CrossRefGoogle Scholar
  78. Pelster B, Scheid P (1992) Countercurrent concentration and gas secretion in the fish swim bladder. Physiol Zool 65: 1–16Google Scholar
  79. Pilon-Smits (1992) Variation and evolution of crassulacean acid metabolism in Sedum and Aeonium (Crassulaceae). PhD Thesis, Rijksuniversiteit te Utrecht, UtrechtGoogle Scholar
  80. Proctor MCF, Raven JA, Rice SK (1992) Stable carbon isotope discrimination measurements in Sphagnum and other bryophytes: physiological and ecological implications. J Bryol 17: 193–202Google Scholar
  81. Prÿs-Jones OE, Willmer P (1992) The biology of alkaline nectar in the purple toothwort (Lathraea clandestina): ground level defences. Biol J Linn Soc 45: 373–388CrossRefGoogle Scholar
  82. Raven JA (1977) H+ and Ca2+ in phloem and symplast: relation of relative immobility to the cytoplasmic nature of the transport paths. New Phytol 79: 465–480CrossRefGoogle Scholar
  83. Raven JA (1984) Energetics and transport in aquatic plants. AR Liss, New YorkGoogle Scholar
  84. Raven JA (1985) Regulation of pH and generation of osmolarity in vascular land plants: costs and benefits in relation to efficiency of use of water, energy and nitrogen. New Phytol 101: 25–77CrossRefGoogle Scholar
  85. Raven JA (1986) Biochemical disposal of excess H+ in growing plants? New Phytol 104: 175–206CrossRefGoogle Scholar
  86. Raven JA (1988) The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phytol 109: 279–287CrossRefGoogle Scholar
  87. Raven JA (1990) Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and C assimilation pathway. New Phytol 116: 1–18CrossRefGoogle Scholar
  88. Raven JA (1991a) Plant responses to high CO2 concentrations: relevance to previous high O2 episodes. Palaeogeogr Palaeoelimatol Palaeoecol (Global and Planetary Change Section) 97: 19–38CrossRefGoogle Scholar
  89. Raven JA (1991b) Implications of inorganic C utilization: ecology, evolution and geochemistry. Can J Bot 69: 908–924CrossRefGoogle Scholar
  90. Raven JA (1992) Energy and nutrient acquisition by autotrophic symbioses. Symbiosis 14: 33–60Google Scholar
  91. Raven JA (1993) The evolution of vascular land plants in relation to quantitative functioning of dead water-conducting cells and stomata. Biol Rev 68: 337–363CrossRefGoogle Scholar
  92. Raven JA, Farquhar GD (1990) The influence of N metabolism and organic acid synthesis on the natural abundance of C isotopes in plants. New Phytol 116: 505–529CrossRefGoogle Scholar
  93. Raven JA, Glidewell SM (1981) Processes limiting photosynthetic conductance. In: Johnson CB (ed) Physiological processes limiting plant productivity. Butterworths, London, pp 109–136Google Scholar
  94. Raven JA, Johnston AM (1991) Photosynthetic carbon assimilation by Prasiola stipitata (Prasiolales, Chlorophyta) under emersed and submersed conditions: relationship to the taxonomy of Prasiola. Br Phycol J 26: 247–257CrossRefGoogle Scholar
  95. Raven JA, Newman JR (1994) Requirement for carbonic anhydrase activity in processes other than photosynthetic inorganic carbon assimilation. Plant Cell Environ 17: 123–130CrossRefGoogle Scholar
  96. Raven JA, Osborne BA, Johnston AM (1985) Uptake of CO2 by aquatic vegetation. Plant Cell Environ 8: 417–425CrossRefGoogle Scholar
  97. Raven JA, MacFarlane JJ, Griffiths H (1986) The application of carbon isotope techniques. In: Crawford RMM (ed) Plant life in aquatic and amphibious habitats. Blackwell, Oxford, pp 129–149Google Scholar
  98. Raven JA, Johnston AM, MacFarlane JJ, Surif MB, McInroy SG (1987) Diffusion and active transport of inorganic carbon species in freshwater and marine macroalgae. In: Biggins J (ed) Progress in photosynthesis research, vol 4. Nijhoff/Junk, Dordrecht, pp 333–340Google Scholar
  99. Raven JA, Handley LL, Mclnroy S, McKenzie L, Richards JH, Samuelsson G (1988) The role of root CO2 uptake and CAM in inorganic C acquisition by plants of the isoetid life form. A review, with new data on Eriocaulon decangulare. New Phytol 108: 1–20CrossRefGoogle Scholar
  100. Reed ML (1979) Intracellular location of carbonate dehydratase (carbonic anhydrase) in leaf tissue. Plant Physiol 63: 216–217PubMedCrossRefGoogle Scholar
  101. Rieley G, Collier RJ, Jones DM, Eglinton G, Eakin PA, Fallick AE (1991) Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds. Nature 352: 425–427CrossRefGoogle Scholar
  102. Rustin P, Meyer CR, Wedding RT (1988) Identification of substrate and effector binding sites of phosphoenolpyruvate carboxylase from Crassula argentea. A possible role of phosphoenolpyruvate as substrate and activator. J Biol Chem 263: 17611–17614PubMedGoogle Scholar
  103. Sanders D, Davies JM, Rea PA, Brosnan JM, Johannes E (1992) Transport of H +, K+ and Ca2+ at the vacuolar membrane of plants. In: Tobin AK (ed) Plant organelles. Cambridge University Press, Cambridge, pp 169–188Google Scholar
  104. Smith BN, Madhaven S (1982) Carbon isotope ratios in obligate and facultative CAM plants. In: Ting IP, Gibbs M (eds) Crassulacean acid metabolism. American Society of Plant Physiologists, Rockville, pp 231–243Google Scholar
  105. Smith JAC, Bryce JH (1992) Metabolite compartmentation and transport in CAM plants. In: Tobin AK (ed) Plant organelles. Cambridge University Press, Cambridge, pp 141–167Google Scholar
  106. Smith JAC, Heuer S (1981) Determination of the volume of intercellular spaces in leaves and some values for CAM plants. Ann Bot (New Ser) 48: 915–918Google Scholar
  107. Smith SD, Nobel PS (1986) Deserts, In: Baker NR, Long SP (eds) Photosynthesis in contrasting environments. Elsevier, Amsterdam, pp 13–62Google Scholar
  108. Spalding MH, Stumpf DK, Ku MSB, Burris RH, Edwards GE (1979) Crassulacean acid metabolism and diurnal variations of internal CO2 and O2 concentrations in Sedum praealtum DC. Aust J Plant Physiol 6: 557–567CrossRefGoogle Scholar
  109. Surif MB, Raven JA (1989a) Exogenous inorganic carbon sources for photosynthesis in seawater by members on the Fucales and Laminariales (Phaeophyta): ecological and taxonomic implications. Oecologia 78: 97–105CrossRefGoogle Scholar
  110. Surif MB, Raven JA (1989b) Occurrence of diel changes in titratable acidity in plant cell contents: indication of CAM-like metabolism in plants native to Scotland and plants from elsewhere. Trans Bot Soc Edinb 45: 235–244CrossRefGoogle Scholar
  111. Surif MB, Raven JA (1990) Photosynthetic gas exchange under emersed conditions in eulittoral and normally submersed members of the Fucales and the Laminariales: interpretation in relation to C isotope ratio and N and water use efficiency. Oecologia 82: 68–80CrossRefGoogle Scholar
  112. Tidwell WD, Nambudiri EMV (1989) Tomlinsonia thomassonii, gen. et sp. nov., a per-mineralized grass from the Upper Miocene Ricardo Formation, California. Rev Palaeobot Palynol 60: 165–177CrossRefGoogle Scholar
  113. Tidwell WD, Nambudiri EMV (1990) Tomlinsonia stichkania sp. nov., a permineralized grass from the Pliocene to (?)Pleistocene China Ranch beds in Sperry Wash, California. Bot Gaz 151: 263–274CrossRefGoogle Scholar
  114. Troughton JH, Card KA, Hendy CH (1974a) Photosynthetic pathways and carbon isotope discrimination by plants. Carnegie Inst Washington Year Book 73: 768–780Google Scholar
  115. Troughton JH, Wells PV, Mooney HA (1974b) Photosynthetic mechanisms and palaeoecology from carbon isotope ratios in ancient specimens of C4 and CAM plants. Science 185: 610–612PubMedCrossRefGoogle Scholar
  116. Tsuzuki M, Miyachi S, Winter K, Edwards GE (1982) Localization of carbonic anhydrase in CAM plants. Plant Sci Lett 24: 211–218CrossRefGoogle Scholar
  117. Valdes PJ, Sellwood BW (1992) A palaeoclimatic model for the Kimmeridgian. Palaeogeogr Palaeoclimatol Palaeoecol 40: 67–101Google Scholar
  118. Waisel Y (1991) The glands of Tamarix aphylla: a system for salt recretion or for carbon concentration. Physiol Plant 83: 506–510CrossRefGoogle Scholar
  119. Webb DR, Rattray MR, Brown JMA (1988) A preliminary survey for crassulacean acid metabolism (CAM) in submerged aquatic macrophytes of New Zealand. NZ J Mar Fresh Water Res 22: 231–235CrossRefGoogle Scholar
  120. West-Eberhard MJ (1986) Alternative adaptations, speciation, and phylogeny (a review). Proc Natl Acad Sci USA 82: 1388–1392CrossRefGoogle Scholar
  121. Winter K (1981) Carbon dioxide and water vapour exchange, malate content and δ 13C value in Cicer arietinum grown under two water regimes. Z Pflanzenphysiol 101: 421–430Google Scholar
  122. Winter K (1985) Crassulacean acid metabolism. In: Barber J, Baker NR (eds) Photosynthetic mechanisms and the environment. Elsevier, Amsterdam, pp 329–387Google Scholar
  123. Winter K, Ziegler H (1992) Induction of crassulacean acid metabolism in Mesembryanthemum crystallinum increases reproductive success under conditions of drought and salinity stress. Oecologia 92: 475–479CrossRefGoogle Scholar
  124. Wright VP, Vanstone SD (1991) Addressing the carbon dioxide content of ancient atmospheres using palaeocretes: theoretical and empirical constraints. J Geol Soc Lond 148: 945–957CrossRefGoogle Scholar
  125. Wurtelle ES, Nikolau BJ (1990) Plants contain multiple biotin enzymes: discovery of 3-methylcrotonyl-CoA carboxylase, propionyl CoA carboxylase and pyruvate carboxylase in the plant kingdom. Arch Biochem Biophys 278: 179–186CrossRefGoogle Scholar
  126. Zeigler AM, Raymond AL, Gierlowski TC, Horrell MA, Rowley DB, Lottes AL (1987) Coal, climate and terrestrial productivity: the present and early Cretaceous compared. In: Scott AC (ed) Coal and coal-bearing strata: recent advances. Geol Soc Spec Publ 32. Geological Society, London, pp 25–49Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • J. A. Raven
    • 1
  • R. A. Spicer
    • 2
  1. 1.Department of Biological SciencesUniversity of DundeeDundeeUK
  2. 2.Department of Earth SciencesThe Open UniversityMilton KeynesUK

Personalised recommendations