Future Applications

  • W. Menzel
Part of the Springer Series in Electronics and Photonics book series (SSEP, volume 32)


For system applications, the mm-wave frequency range overlaps, on the one hand, with standard microwave frequencies and, on the other hand, with the optical or IR range. Compared to microwave frequencies, mm-waves offer
  • — additional wide frequency bands for new applications.

  • — Smaller antenna dimensions for a given gain or higher gain for fixed antenna dimensions.

  • — Small component size combined with low weight.

  • — High data rates or spread-spectrum transmission in communication systems.

  • — High resolution of angle, range and Doppler frequencies in radar systems.


Phase Lock Loop Dielectric Resonator Doppler Radar Radar Sensor Harmonic Mixer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Section 9.0

  1. 9.1
    A. Van der Forst: MM-Wave atmospheric propagation and system implications. 16th Europ. Microw. Conf., Dublin (1986) pp. 19-30Google Scholar
  2. 9.2
    H.J. Kumo: Are millimeter-wave systems affordable now? Microwave J. 16–24 (June 1982)Google Scholar
  3. 9.3
    D.M. Russel: MM-wave snapshot reveals maturing technology. Defense Electronics 113–115 (October 1984)Google Scholar
  4. 9.4
    N.B. Kramer: Must MM-waves wait again? Microwave J. 24–25 (July 1985)Google Scholar
  5. 9.5
    A.E. Braun: Progress in millimeter-waves-where is the infrastructure? Defense Electronics 77–82 (December 1982)Google Scholar
  6. 9.6
    H. Meinel, B. Rembold: Commercial and scientific applications of millimetric and submillimetric waves. The Radio and Electronic Engineer, No. 7/8, 351–360 (1979)CrossRefGoogle Scholar
  7. 9.7
    K. Lindner, W. Wiesbeck: Die Mikrowellenbaugruppen eines 35 GHz Abstandswarnradars für Kraftfahrzeuge (the microwave components of a 35 GHz anticollision radar for cars). Mikrowellen Magazin 398–403 (May 1977)Google Scholar
  8. 9.8
    G. Neininger: Vehicle Collision Avoidance Radar. Funkschau 49, 389–393 (September 1977) (in German)Google Scholar
  9. 9.9
    T.H. Oxley, C. Burnett: MM-Wave (30–110 GHz) hybrid microstrip technology. Microw. J. Part I: 36-44 (March 1986), Part II: 177-185 (May 1986)Google Scholar
  10. 9.10
    K. Solbach: The status of printed MM-wave E-plane circuits. IEEE Trans. MTT-31, 107–121 (1983)Google Scholar
  11. 9.11
    W. Menzel: Integrated fin-line components for communication, radar, and radiometer applications. Infrared and Millimeter waves 13, 77–121 (Academic Press) Orlando 1985Google Scholar
  12. 9.12
    G. Reinhold, H. Meinel: Verwendung von Millimeterwellen in Bahnsystemen (application of mm-wave in railway systems). NTZ 34, 352–357 (1981)Google Scholar
  13. 9.13
    H. Meinel, A. Plattner, G. Reinhold: A 40 GHz railway communication system. IEEE Trans. SAC-1, 615–622 (1983)Google Scholar
  14. 9.14
    B. Rembold, H.G. Wippich, M. Bischoff, W.F.X. Frank: A 60 GHz collision warning sensor for helicopters. Military Microw. Conf., London (1982) pp. 344-351Google Scholar
  15. 9.15
    W. Linss et al.: MM-wave radar sensor for traffic data acquisition systems. Proc. SBMO, Int. Microw. Symp. Sao Paulo, Brazil (1989) pp. 513–521Google Scholar
  16. 9.16
    H.-J. Fischer: Digital beacon vehicle communication at 61 GHz for interactive dynamic traffic management. 8th Int’l Conf. on Automotive Electronics, London (1991) pp. 120-124Google Scholar
  17. 9.17
    E. Lissel: Geschwindigkeits-und Wegsensor nach dem Mikrowellen-Doppler-Prinzip (distance meter using the microwave Doppler principle). VDI-Bericht 687, 257–282 (1988)Google Scholar
  18. 9.18
    S.A. Mohamed, M. Pilgrim: 29 GHz point-to-point radio systems for local distribution. British Telecom Technology 2, 29–40 (1984)Google Scholar
  19. 9.19
    P. Dupuis S. Meyer, M. Goloubkoff, J.J. Guena: Millimeter wave subscriber loops. IEEE Trans. SAC-1, 623–632 (1983)Google Scholar
  20. 9.20
    K. Ogawa, T. Ishizaki, K. Hashimoto, M. Sakarura, T. Uwano: A 50 GHz compact communication system for video link fabricated in MIC. IEEE Intern. Microw. Symp. MTT, New York (1988) pp. 1023–1026Google Scholar
  21. 9.21
    H. Meinel, W. Menzel: Commercial millimeter-wave applications. Int’l Conf. on IR and MM-Waves, Orlando (1985) T 1.2Google Scholar
  22. 9.22
    IEEE Microw. and Millimeter-Wave Monolithic Circuits Symp. Dig. (1992)Google Scholar
  23. 9.23
    H. Meinel: Applications of microwaves and millimeterwaves for vehicle communications and control in Europe. IEEE Int’l Microw. Symp. MTT, Albuquerque (1992) pp. 609–612Google Scholar
  24. 9.24
    Panel Session on IVHS in America. IEEE Int’l. Microw. Symp. MTT, Albuquerque (1992)Google Scholar
  25. 9.25
    M. Kotaki, Y. Takimoto, E. Akutsu, Y. Fujita, H. Fukuhara, T. Takahashi.: Development of millimeter wave automotive sensing technology in Japan. IEEE Int’l Microw. Symp. MTT, Albuquerque (1992) pp. 709–712Google Scholar

Section 9.1

  1. 9.26
    J.H. Rainwater: Radiometers Electronic eyes that’ see’ noise. Microwaves 58-62 (September 1978)Google Scholar
  2. 9.27
    W. Hetzner: Aktive und passive Straßenzustandserkennung im Millimeterwellenbereich (detection of road surface condition using mm-waves). Frequenz 38, 179–185 (1984)CrossRefGoogle Scholar
  3. 9.28
    G. Kadel: Radarechos mechanisch schwingender Objekte. Dissertation, TH Darmstadt, VDI Fortschrittsberichte, Reihe 21, Nr. 36Google Scholar
  4. 9.29
    H.G. Wippich, A. Happe, B. Rembold: Ein 60 GHz Radarsensor zur Bestimmung des oberen Totpunktes bei Verbrennungskraftmaschinen (a 60 GHz radar sensor for the measurement of the upper dead center in combustion engines). VDI Report 509, 259–261 (1984)Google Scholar
  5. 9.30
    W. Holpp: High resolution mm-wave sensors converted from military to industrial applications. Proc. Military Microw. Conf., Brighton, England (1992) pp. 13–20Google Scholar
  6. 9.31
    J. Detlefsen, W.-D. Schuck: Präzisionslängenmessung mit Millimeterwellen (precision length measurements using mm-waves). NTZ 35, 344–347 (June 1 1982)Google Scholar
  7. 9.32
    D.A. Williams: Millimeter wave RADARS for automotive applications. IEEE Int’l Microw. Symp. MTT, Albuquerque (1992) pp. 721–725Google Scholar
  8. 9.33
    Workshop on Advanced Car Electronics and Future Traffic Control Systems Related to Microwaves. 21st Europ. Microw. Conf., Stuttgart (1991)Google Scholar
  9. 9.34
    W. Holpp: Millimeterwave radar applications in the commercial arena. Proc. Workshop Commercial Applications of Micro-and Millimetre Waves. 22nd Europ. Microw. Conf., Helsinki (1992) pp. 9-17Google Scholar
  10. 9.35
    N. Haese, M. Benlamlih, D. Cailleur, P.A. Rolland: Low-cost design of a quasi-optical front-end for on-board MM-wave pulse radar. IEEE Int’l Microw. Symp. MTT, Albuquerque (1992) pp. 621–623Google Scholar
  11. 9.36
    D. Kroll, B. Rembold: Communication with millimeter-waves. MIOP Conf., Wiesbaden, Germany (1987) UE III-2 (in German)Google Scholar
  12. 9.37
    M. Lange, J. Detlefsen, M Bockmaier: 94 GHz imaging radar for autonomous vehicles. 18th Europ. Microw. Conf., Stockholm, Sweden (1988) pp. 826-830Google Scholar

Section 9.2

  1. 9.38
    M. Hata, A. Fukazawa, M. Blesho, S. Makimo, R. Higuchi.: A new 40 GHz digital distribution radio with single local oscillator. IEEE Int’l Microw. Symp. MTT, Ottawa (1978) pp. 236–238Google Scholar
  2. 9.39
    S. Samejima, S. Kurokawa: Transportable radio equipment using 40 GHz band for video conference system. J. Telecom. Rev. 21, No. 4, 364–399 (October 1979)Google Scholar
  3. 9.40
    H.H. Meinel: Millimeter wave system design and application trends in Europe. Alta Frequenza 28, No. 5-6, 441–456 (September–December 1989)Google Scholar
  4. 9.41
    F. Baron, M. Liber: 60 GHz communications, technology and applications trends. Proc. Workshop Commercial Applications of Micro-and Millimetre Waves. 22nd Europ. Microw. Conf., Helsinki (1992) pp. 24–28Google Scholar
  5. 9.42
    H.-J. Fischer: Vehicle communications at 61 GHz, Workshop Commercial Applications of Micro-and Millimetre Waves. Proc. 22nd Europ. Microw. Conf., Helsinki (1992) pp. 35-40Google Scholar
  6. 9.43
    W. Linss: Futuristic view of the applications of advanced mm-wave integrated circuits in a traffic environment. Proc. 21st Europ. Microw. Conf., Workshop, Stuttgart, Germany (1991) pp. 106-111Google Scholar
  7. 9.44
    WICOL 38, Product information, Telefunken Sendertechnik, Berlin (1991)Google Scholar

Section 9.3

  1. 9.45
    U. Gütlich, A. Gruhle, J.F. Luy: A Si-SiGe HBT dielectric resonator stabilized microstrip oscillator at X-band frequencies. IEEE Microw. and Guided Wave Lett. 2, 281–283 (1992)CrossRefGoogle Scholar
  2. 9.46
    D. Cros, P. Guillon: Whispering gallery dielectric resonator modes for W-band devices. IEEE Trans. MTT-38, 1667–1674 (1990)Google Scholar
  3. 9.47
    B. Ress, L. Johnson, D. Apte: Prescaler aids design of fast frequency source. Microwaves & RF, 129 ff (November 1990)Google Scholar
  4. 9.48
    R.L. Miller: Fractional frequency generators using regenerative modulation. IRE Proc. Vol. 27, 446–457 (1939)CrossRefGoogle Scholar
  5. 9.49
    A. Plattner: A coherent, frequency agile 94 GHz radar with dual polarization capabilities. Proc. 15th Europ. Microw. Conf., Paris (1985) pp. 125-130Google Scholar
  6. 9.50
    P. Nüchter, W. Menzel: A MM-wave frequency divider. IEEE Int’l Microw. Symp. MTT, Albuquerque (1992) pp. 695–697Google Scholar
  7. 9.51
    G. Strauss, W. Menzel: A novel concept for mm-wave interconnects and packaging. IEEE Int’l Microw. Symp. MTT, San Diego (1994) pp. 1141-1145Google Scholar
  8. 9.52
    B. Berson: Strategies for microwave and millimeter wave packaging today. 19th Europ. Microw. Conf., London (1989) pp. 89-95Google Scholar
  9. 9.53
    G. Jerinic, M. Borkowski: Microwave module packaging. IEEE Int’l Microw. Symp. MTT, Albuquerque (1992) pp. 1503–1506Google Scholar
  10. 9.54
    H.-J. Kuno, T.A. Midford: Millimeter wave packaging. IEEE Int’l Microw. Symp. MTT, Albuquerque (1992) pp. 1507–1508Google Scholar
  11. 9.55
    A.K. Agrawal, R.D. Clarz, J.J. Komiaz, R. Browne: Microwave module interconnection and packaging using multilayer thin film/thick film technology. IEEE Int’l Microw. Symp. MTT, Albuquerque (1992) pp. 1509–1511Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • W. Menzel
    • 1
  1. 1.Department of Microwave TechniquesUniversity of UlmUlmGermany

Personalised recommendations