Skip to main content

SiGe Heterojunction Bipolar Transistors

  • Chapter
Silicon-Based Millimeter-Wave Devices

Part of the book series: Springer Series in Electronics and Photonics ((SSEP,volume 32))

Abstract

The world-wide electronics market is estimated to reach 200 billion $ in the year 2000. CMOS digital circuits represent the largest share of this market with their low-power consumption and the possibility of dynamic memories. Silicon Bipolar Junction Transistors (BJTs) are used in about 20% of all integrated circuits, mostly high-speed and analogue applications. The trend of steadily increasing switching speeds and communication rates demands further improvement of the performance of BJTs. In addition, at present the considerable number of BiCMOS circuits, which combine the high-current drive capability of BJTs with the low-power CMOS, demonstrates new applications for bipolar transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Section 4.0

  1. T. Ishibashi, O. Nakajima, J. Nagata, Y. Yamauchi, H. Ito: Ultra-high-speed AlGaAs/GaAs HBTs. IEDM 88, 826–829 (1988)

    Google Scholar 

  2. W.J. Ho, N.L. Wang, M.F. Chang, A. Sailer, J.A. Higgins: Self-alignment AlGaAs/GaAs HBT with extrapolated maximum oscillation frequency of 350 GHz. DRC’ 92, IVA-1 (1992)

    Google Scholar 

  3. A. Gruhle, H. Kibbel, U. Erben, E. Kasper: 91 GHz SiGe HBTs grown by MBE. Electr. Lett. 29, 415–416 (1993)

    Article  CAS  Google Scholar 

  4. H. Schumacher, U. Erben, A. Gruhle: Noise characterisation of SiGe HBTs at microwave frequencies. Electr. Lett. 28, 1167–1168 (1992)

    Article  CAS  Google Scholar 

  5. D.L. Harame, E.F. Crabbé, J.D. Cressler, J.H. Comfort: A high performance epitaxial SiGe-base ECL BICMOS technology. IEDM 92, 19–22 (1992)

    Google Scholar 

  6. S.M. Sze, H.K. Gummel: Appraisal of semiconductor-metal-semiconductor transistor. Sol.-St. Electr. 9, 751–769 (1966)

    Article  CAS  Google Scholar 

  7. J.M. Shannon, A. Gill: High current gain in monolithic hot-electron transistors. Electron. Lett. 17, 620–621 (1981)

    Article  CAS  Google Scholar 

  8. R.C. Taft, J.D. Plummer, S.S. Iyer: Demonstration of a p-channel BICFET in the GeSi/Si system. Electr. Dev. Lett. 10, 14–16 (1989)

    Article  CAS  Google Scholar 

Section 4.1

  1. P.M. Asbeck: Bipolar transistors in High-Speed Semiconductor Devices, ed. by S.M. Sze, (J Wiley, New York 1990)

    Google Scholar 

  2. A. Gruhle, H. Kibbel, U. König, U. Erben, E. Kasper: MBE grown Si/SiGe HBTs with high β, f T and f max. EDL-13, 206–208 (1992)

    Article  CAS  Google Scholar 

  3. A. Gruhle, H. Kibbel, U. Erben. E. Kasper: Base thickness and high frequency performance of SiGe HBTs. Dev. Res. Conf. IIA-2 (1993)

    Google Scholar 

  4. H. Kroemer: Two integral relations pertaining to the electron transport through a bipolar transistor with a nonuniform energy gap in the base region. Sol.-St. Electr. 28, 1101–1103 (1985)

    Article  Google Scholar 

  5. E.J. Prinz, J.C. Sturm: Analytical modeling of current gain — Early voltage products in Si/SiGe/Si HBTs. IEDM 91, 853–856 (1991)

    Google Scholar 

  6. T.F. Meister: Vertical scaling considerations for polysilicon emitter bipolar transistors, in Ultra Silicon Bipolar Technology, ed. by L. Treitinger, M. Miura, Springer Ser. Electron. Photon., Vol. 27 (Springer, Berlin, Heidelberg 1988) pp. 57–58

    Google Scholar 

  7. H. Kroemer: “HBTs and integrated circuits”. Proc. IEEE, 70, 13–25 (1982)

    Article  Google Scholar 

  8. Z.A. Shafi, P. Ashburn, G.J. Parker: Predicted propagation delay of Si/SiGe heterojunction bipolar ECL circuits. IEEE J. Sol. St. Circ. 25, 1268–1276 (1990)

    Article  Google Scholar 

  9. M.Y. Ghannam, R.P. Mertens, R.v. Overstraeten: An analytical model for the determination of the transient response of CML and ECL gates. IEEE Trans. ED-37, 191–201 (1990)

    Article  Google Scholar 

  10. P.K. Tien: Propagation delay in high speed silicon bipolar and GaAs HBT digital circuits. Int’l J. High Speed Electr., 1, 101–124 (1990)

    Article  Google Scholar 

  11. R. People, J.C. Bean: Calculation of critical layer thickness versus mismatch for GeSi/Si strained-layer heterostructures. Appl. Phys. Lett. 49, 229 (1986)

    Article  Google Scholar 

  12. R. People, J.C. Bean: Band alignments of coherently strained SiGe heterostructures on GeSi substrates, Appl. Phys. Lett. 48, 538–540 (1986)

    CAS  Google Scholar 

Section 4.2

  1. D.J. Roulston: Bipolar Semiconductor Devices (McGraw-Hill, New York 1990), pp. 225–226

    Google Scholar 

  2. Z.A. Shafi, P. Ashburn: Silicon-based pseudo-heterojunction bipolar transistors. J. Sol. St. Electr. 68, 72–74 (December 1990)

    Google Scholar 

  3. J. Stork, R.D. Isaac: Tunneling in base-emitter junctions, IEEE Trans. ED-30, 1527–1534 (1989)

    Article  Google Scholar 

  4. Z. Matutinovic-Krstelj, EJ. Prinz, P.V. Schwartz, J.C. Sturm: Reduction of p+n+ junction tunneling current for base current improvement in SiGe HBTs, IEEE EDL. 12, 163–165 (1991)

    Article  CAS  Google Scholar 

  5. J.C. Sturm, E.J. Prinz, C.W. Magee: Graded-base SiGe HBTs grown by RTCVD with near-ideal electrical characteristics. IEEE EDL-12, 303–305 (1991)

    Article  CAS  Google Scholar 

  6. H.-U. Schreiber, B.G. Bosch: SiGe HBTs with current gains up to 5000. IEDM 89, 643–646 (1989)

    Google Scholar 

  7. C.A. King, J.L. Hoyt, J.F. Gibbons: Bandgap and transport properties of SiGe by analysis of nearly ideal Si/SiGe/Si HBTs. IEEE Trans. HED-36, 2093–2104 (1989)

    Article  CAS  Google Scholar 

  8. A. Pruijmboom, C.E. Timmering, J.v. Rooij-Mulder, D.J. Gravesteijn, W.B. de Boer. Microelectr. Eng. 19, 427–434 (1992)

    Article  CAS  Google Scholar 

  9. A. Gruhle: High performance Si/SiGe HBTs grown by MBE. J. Vac. Sci. Techn. B 11, 1186–1189 (1993)

    Article  CAS  Google Scholar 

  10. Z.A. Shafi, C.J. Gibbings, P. Ashburn, I.R.C. Post: The importance of neutral base recombination in compromising the gain of SiGe HBTs. IEEE Trans. ED-38, 1973–1976 (1991)

    Article  CAS  Google Scholar 

  11. R. Hull, J.C. Bean: Thermal stability of Si/GeSi/Si heterostructures. Appl. Phys. Lett. 55, 1900–1902 (1989)

    Article  CAS  Google Scholar 

  12. G.L. Patton, J.H. Comfort, B.S. Meyerson: 75 GHz fT SiGe HBTs, IEEE EDL-11, 171–173 (1990)

    Article  CAS  Google Scholar 

  13. D.B.M. Klaassen, J.W. Slootboom, H.C. de Graaff: Unified apparent BGN in n-and p-type silicon. Solid State Electr. 35, 125–129 (1992)

    Article  CAS  Google Scholar 

  14. A. Gruhle, H. Kibbel, E. Kasper: The influence of MBE layer design on the high frequency performance of Si/SiGe HBTs. Microelectr. Eng. 19, 435–437 (1992)

    Article  Google Scholar 

  15. G. Gao, H. Morkoc: Base transit time for SiGe-base HBTs. Electr. Lett. 27, 1408–1410 (1991)

    Article  CAS  Google Scholar 

  16. D.V. Lang, R. People, J.C. Bean, A.M. Sergent: Measurement of the band gap of SiGe strained-layer heterostructures. Appl. Phys. Lett. 47, 1333–1335 (1985)

    Article  CAS  Google Scholar 

  17. K. Nauka, T.I. Kamins, J.E. Turner, C.A. King, J.L. Hoyt: Admittance spectroscopy measurements of band offsets in SiGe heterostructures. Appl. Phys. Lett.-60, 195–197 (1992)

    Article  CAS  Google Scholar 

  18. S.C. Jain, D.J. Roulston: A simple expression for BGN in heavily doped Si, Ge, GaAs and SiGe strained layers. Sol.-Stat. Electr. 34, 453–465 (1991)

    Article  CAS  Google Scholar 

  19. E.J. Prinz, P.M. Garone, P.V. Schwartz, X. Xiao, J.C. Sturm: The effect of BE spacers and strain-dependent densities of states in SiGe HBTs. IEDM 89, 639–642, (1989)

    Google Scholar 

  20. J. Poortmans, S.C. Jain, M. Caymax, A. van Ammel: Evidence of the influence of heavy-doping BGN on the collector current of strained SiGe-base HBTs. Micro-electr. Eng. 19, 443–446 (1992)

    Article  CAS  Google Scholar 

  21. A. Pruijmboom, J.W. Slotboom, D.J. Gravesteijn: Heterojunction bipolar transistors with SiGe base grown by MBE. IEEE Trans. EDL-12, 357–359 (1991)

    Google Scholar 

  22. T. Manku, A. Nathan: Effective mass for strained p-type SiGe, J. Appl. Phys. 69, 8414–8416 (1991)

    Article  CAS  Google Scholar 

  23. V. Grivickas, V. Netiksis, D. Noreika, M. Petranskas, W. Willander: Ambipolar diffusion is strained Si1-xGex (100) layers grown by molecular beam epitaxy. J. Appl. Phys. 70, 1471–1474 (1991)

    Article  CAS  Google Scholar 

  24. K. Misiakos, C.H. Wang, A. Neugroschel: Method for simultaneous measurement of diffusivity, lifetime and diffusion length with application to heavily doped silicon. IEEE Trans. EDL-10, 111–113 (1989)

    CAS  Google Scholar 

  25. S.E. Swirhun, Y.H. Kwark, R.H. Swanson: Measurement of electron lifetime, mobility and BGN in heavily doped p-type silicon. IEDM 86, 24–27 (1986)

    Google Scholar 

  26. D.B.M. Klaassen: A unified mobility for device simulation. Sol. State Electr. 35, 961–967 (1992)

    Article  CAS  Google Scholar 

  27. F. Schäffler, H.-J. Herzog, H. Jorke, E. Kasper: Influence of thermal annealing on the electron mobility in modulation doped SiGe heterostructures. J. Vac. Sci. Techn. B 9, 2039–2044 (1991)

    Article  Google Scholar 

  28. J.W. Slotboom, G. Streutker, A. Pruijmboom, D. Gravesteijn: Parasitic Energy barriers in SiGe HBTs. IEEE Trans. EDL-12, 486–488 (1991)

    CAS  Google Scholar 

  29. E.J. Prinz, P.M. Garone, P.V. Schwartz, X. Xiao, J.C. Sturm: The Effects of base dopant outdiffusion and undoped SiGe junction spacer layers in SiGe HBTs. IEEE Trans. EDL-12, 42–44 (1991)

    CAS  Google Scholar 

  30. B. Mazhari, G.B. Gao, H. Morkoc: Sol.-St. Electr. 34, 315–321 (1991)

    Article  Google Scholar 

  31. D.L. Harame, J. Stork, B.S. Meyerson: 30 GHz polysilicon-emitter and single-crystal-emitter graded SiGe-base PNP transistors IEDM 90, 33–36 (1990)

    Google Scholar 

  32. A. Gruhle: The influence of EB-junction design on collector saturation current, ideality factor, Early voltage and device switching speed of SiGe HBTs IEEE Trans. ED-41, 198–203 (1993)

    Google Scholar 

  33. H. Jorke: Injection current in a planar doped base Si bipolar junction transistor, Sol.-St. Electr. 36, 975–979 (1993)

    Article  CAS  Google Scholar 

  34. E.O. Johnson: Physical limitations on frequency and power parameters of transistors RCA Rev. 26, 163–177 (1965)

    Google Scholar 

  35. D.D. Tang, P. Lu: A reduced field design concept for high performance bipolar transistors IEEE Trans. EDL-10, 67–69 (1989)

    Google Scholar 

  36. P. Lu, J.H. Comfort, D. Tang, B.S. Meyerson, J. Sum: The implementation of a reduced-field profile design for high performance bipolar transistors IEEE Trans. EDL-11, 336–338 (1990)

    Google Scholar 

  37. M. Ugajin, Y. Amemiya: The base collector heterojunction effect in SiGe-base bipolar transistors Sol.-St. Electr. 34, 393–598 (1991)

    Google Scholar 

  38. G. Gao, Z. Fan, H. Morkoc: Analysis of cut-off frequency roll-off at high currents in SiGe double-heterojunction bipolar transistors Appl. Lett. 58, 2951–2953 (1991)

    Article  Google Scholar 

  39. P. Cottrell, Z. Yu: Velocity saturation in the collector of Si/GeSi/Si HBTs, IEEE Trans. EDL 11, 431–433 (1990)

    CAS  Google Scholar 

  40. G.A. Sai-Halasz, M.R. Wordeman, D.P. Kern, S. Rishton, E. Ganin: High transconductance and velocity overshoot in NMOS devices at the 0.1 μ m — gate-length level. IEEE Trans. EDL-9, 464–466 (1988)

    Google Scholar 

Section 4.3

  1. J.H. Comfort, G.L. Patton, J.D. Cressler, W. Lee, E.F. Crabbé: Profile leverage in a selfaligned epitaxial Si or SiGe base bipolar technology. IEDM (1990) Tech. Digest, 21-24.

    Google Scholar 

  2. J.N. Burghartz, J.H. Comfort, G.L. Patton, B.S. Meyerson, J.Y.-C. Sun: Selfaligned SiGe base heterojunction bipolar transistor by selective epitaxy emitter window (SEEW) technology IEEE Trans. EDL-11, 288–290 (1990)

    CAS  Google Scholar 

  3. J.H. Comfort, E.F. Crabbé, J.D. Cressler, W. Lee, J.Y.-C. Sun: Single crystal emitter cap for epitaxial Si and SiGe base transistors IEDM (1991) Tech. Digest, 857–860

    Google Scholar 

  4. E.F. Crabbé, J.H. Comfort, W. Lee, J.D. Cressler, B.S. Meyerson: 73 GHz selfaligned SiGe base bipolar transistors with phosphorus doped polysilicon emitters, IEEE Trans. EDL-13, 259–261 (1992)

    Google Scholar 

  5. E. Crabbé, B. Meyerson, D. Harame, J. Stork, A. Megdavis: 113 GHz fT graded-base SiGe HBTs Dev. Res. Conf. (1993) IIA-3

    Google Scholar 

  6. S. Sato T. Hahimoto, T. Tatsumi, H. Kitahata, T. Tashiro: Sub 20 ps ECL circuits with 50 GHz fmax self-aligned SiGe HBTs. IEEE IEDM (1992) Tech. Digest, pp. 397–400

    Google Scholar 

  7. T.I. Kamins, K. Nauka, L.H. Camnitz, J.L. Hoyt, C.A. King: High frequency SiGe HBTs. IEEE IEDM-(1989) Tech. Digest, pp. 647-650

    Google Scholar 

  8. H. Schreiber: High-Speed double mesa Si/SiGe HBT fabricated by selfalignment technology. Electr. Lett. 28, 485–487 (1992)

    Article  CAS  Google Scholar 

  9. H. Kibbel, E. Kasper, P. Narozny, H.-U. Schreiber: Boron doping of SiGe base of heterobipolar transistors Thin Sol. Films, 184, 163 (1990)

    CAS  Google Scholar 

  10. B.S. Meyerson: Low-temperature silicon epitaxy by ultrahigh vacuum CVD. Appl. Phys. Lett. 48, 797–799 (1986)

    Article  CAS  Google Scholar 

  11. D. Dutartre, P. Warren: Low Temperature Si and SiGe epitaxy by RTCVD in the system SiH4, B2H6 and H2. AVS Fall Meeting (1992) TC2-TuM4

    Google Scholar 

  12. T.O. Sedgwick, V.P. Kesan, P.D. Agnello: Characterization of devices fabricated in films grown at LT by APCVD. IEDM 91, 451–454 (1989)

    Google Scholar 

Section 4.4

  1. J.D. Cressler, J. Warnock, P.J. Coane, K.N. Chiong, M.E. Rothwell: A scaled 0.25 μ m bipolar technology using full e-beam lithography. IEEE Trans. EDL-13, 262–264 (1992)

    Google Scholar 

  2. K. Toh, J.D. Warnock, J.D. Cressler, K.A. Jenkins: Sub-15 ps gate delay with new coupled active pull-down ECL circuit. IEEE Trans BCTM-33 Vol. 136–138, (1991)

    Google Scholar 

  3. E.J. Prinz, X. Xiao, P.V. Schwartz, J.C. Sturm: A novel double base HBT for low temperature bipolar logic. Proc. DRC (1992) IIA-2

    Google Scholar 

  4. R.J. Hawkins: Limitations of Nielsen’s and related noise equations applied to microwave bipolar transistors, and a new expression for the frequency and current dependent noise figure. Solid-State Electron 20, 191–196 (1977)

    Article  Google Scholar 

  5. R. Plana, H. Kibbel, A. Gruhle, L. Escorte, J.P. Roux, J. Graffeuil: Low-frequency noise and microwave noise parameters in Si/SiGe HBTs. Proc. ESSDERC (1993) p. 93

    Google Scholar 

  6. U. Güttich, A. Gruhle, J.-F. Luy: A SiGe HBT dielectric resonator stabilized microstrip oscillator at X-band frequencies. Micr. Guid. Wave Lett. 2, 281–283 (1992)

    Article  Google Scholar 

  7. B. Bayraktaroglu, J. Barrette, R. Fitch, L. Kehias: Thermally stable AlGaAs/GaAs microwave power HBTs. Proc. Dev. Res. Conf. (1993) IIIA–5

    Google Scholar 

  8. J.D. Cressler, E.F. Crabbé, J. Comfort, J. Warnock, K. Jenkins: Profile scaling constraints for ion-implanted and epitaxial bipolar technology designed for 77 K operation. IEDM (1991) pp. 861–864

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gruhle, A. (1994). SiGe Heterojunction Bipolar Transistors. In: Luy, JF., Russer, P. (eds) Silicon-Based Millimeter-Wave Devices. Springer Series in Electronics and Photonics, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79031-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79031-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79033-1

  • Online ISBN: 978-3-642-79031-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics