Species diversity in hot spring microbial mats as revealed by both molecular and enrichment culture approaches — relationship between biodiversity and community structure

  • David M. Ward
  • Michael J. Ferris
  • Stephen C. Nold
  • Mary M. Bateson
  • Eric D. Kopczynski
  • Alyson L. Ruff-Roberts
Part of the NATO ASI Series book series (volume 35)


We have conducted long-term studies of microbial mats of hot springs as model systems for investigating composition and structure of natural microbial communities and as modern analogs of stromatolites (Ward et al. 1984, 1987, 1989b). As recently as the last symposium on microbial mats our knowledge of the biodiversity within these communities was based solely on microbial species cultivated from such mat systems. The view has changed dramatically in the intervening years, because of the application of culture-independent techniques to recover and probe ribosomal RNAs (rRNAs) as biomarkers representing individual mat community members (Ward et al. 1992; Weller et al. 1992 and references cited therein), and more recently because of the renewed attempt to cultivate more relevant species. Here, we summarize what is currently known. The evidence suggests that the molecular methods we are using (Ward et al. 1992) may still not permit a complete understanding of the true complexity of the community. However, the approach does provide insight into understanding the basis behind this large biodiversity and into how more relevant species can be cultivated.


Enrichment Culture Benthic Microbial Community Extreme Thermophile Methanobacterium Thermoautotrophicum Phylogenetic Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baas Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. W.P. van Stockum and Zoon N.V., Den Haag, The NetherlandsGoogle Scholar
  2. Bateson MM, Thibault K, Ward DM (1990) Comparative analysis of partial 16S ribosomal RNA sequences of Thermus species. System Appl Microbiol 13:8–13Google Scholar
  3. Bateson MM, Wiegel J, Ward DM (1989) Comparative analysis of 16S ribosomal RNA sequences of thermophilic fermentative bacteria isolated from hot spring cyanobacterial mats. System Appl Microbiol 12:1–7CrossRefGoogle Scholar
  4. Bauld J, Brock TD (1973) Ecological studies of Chloroflexis, a gliding photosynthetic bacterium. Arch Mikrobiol 92: 267–284CrossRefGoogle Scholar
  5. Ben-Bassat A, Zeikus JG (1981) Thermobacteroides acetoethylicus gen. nov. and spec, nov., a new chemoorganotrophic anaerobic, thermophilic bacterium. Arch Microbiol 128:365–370CrossRefGoogle Scholar
  6. Brock TD (1967) Micro-organisms adapted to high temperatures. Nature 214:882–885CrossRefGoogle Scholar
  7. Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98:289–297Google Scholar
  8. Castenholz RW (1973) Ecology of blue-green algae in hot springs. In: Carr NG, Whitton BA (eds) The biology of blue-green algae. Blackwell, Oxford/London, pp 379–414Google Scholar
  9. Castenholz RW (1981) Isolation and cultivation of thermophilic cyanobacteria. In: Starr MP, Stolp H, Truper HG, Balows A, Schlegel HG (eds) The Prokaryotes. Springer-Verlag, Berlin/Heidelberg/New York pp 236–246Google Scholar
  10. Doemel WN, Brock TD (1977) Structure, growth, and decomposition of laminated algal-bacterial mats in alkaline hot springs. Appl Environ Microbiol 34:433–452Google Scholar
  11. Giovannoni SJ, Schabtach E, Castenholz RW (1987) Isosphaera pallida, gen. and comb, nov., a gliding, budding eubacterium from hot springs. Arch Microbiol 147:276–284CrossRefGoogle Scholar
  12. Jackson TJ, Ramaley RF, Meinschein WG (1973) Thermomicrobium, a new genus of extremely thermophilic bacteria. Int J System Bacteriol 23:28–36CrossRefGoogle Scholar
  13. Kallas T, Castenholz RW (1982) Internal pH and ATP-ADP pools in the cyanobacterium Synechococcus sp. during exposure to growth-inhibiting low pH. J Bacteriol 149:229–236Google Scholar
  14. Loginova LG, Egorova LA (1975) An obligately thermophilic bacterium Thermus ruber from hot springs in Kamchatka. Microbiology 44:593–597Google Scholar
  15. Madigan MT, Brock TD (1977). Adaptation by hot spring phototrophs to reduced light intensities. Arch Microbiol 113:111–120CrossRefGoogle Scholar
  16. Merkel GJ, Underwood WH, Perry JJ (1978) Isolation of thermophilic bacteria capable of growth solely in long-chain hydrocarbons. FEMS Microbiol Lett 3:81–83CrossRefGoogle Scholar
  17. Odum EP (1983) Basic ecology. Saunders College Publishing, Fort Worth, TexasGoogle Scholar
  18. Pace NR, Stahl DA, Lane DJ, Olsen GJ (1986) The analysis of natural microbial populations by ribosomal RNA sequences. Adv Microbial Ecol 9:1–55Google Scholar
  19. Peary JA, Castenholz RW (1964) Temperature strains of a thermophilic blue-green alga. Nature 202:720–721CrossRefGoogle Scholar
  20. Pierson BK, Castenholz RW (1974) A prototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100:5–24CrossRefGoogle Scholar
  21. Ramaley RF, Bitzinger K (1975) Types and distribution of obligate thermophilic bacteria in man-made and natural thermal gradients. Appl Microbiol 30:152–155Google Scholar
  22. Ruff-Roberts AL, Kuenen JG, Ward DM Distribution of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats (submitted)Google Scholar
  23. Sandbeck KA, Ward DM (1982) Temperature adaptations in the terminal processes of anaerobic decomposition of Yellowstone and Icelandic hot spring microbial mats. Appl Environ Microbiol 44: 844–851Google Scholar
  24. Schink B, Zeikus JG (1983) Clostridium thermosutfurogenes sp. nov., a new thermophile that produces elemental sulphur from thiosulphate. J Gen Microbiol 129:1149–1158Google Scholar
  25. Sheridan RP (1976) Sun-shade ecotypes of a bluegreen alga in a hot spring. J Phycol 12:279–285.Google Scholar
  26. Sheridan RP (1979) Seasonal variation in sun-shade ecotypes of Plectonema notatum (Cyanophyta). J Phycol 15:223–226CrossRefGoogle Scholar
  27. Ward DM, Beck E, Revsbech NP, Sandbeck KA, Winfrey MR (1984) Decomposition of hot spring microbial mats. In: Cohen Y, Castenholz RW, Halvorson HO (eds) Microbial mats: Stromatolites. A.R. Liss, Inc., New York pp 191–214Google Scholar
  28. Ward DM, Tayne TA, Anderson KL, Bateson MM (1987) Community structure and interactions among community members in hot spring cyanobacterial mats. Symp Soc Gen Microbiol 41:179–210Google Scholar
  29. Ward, DM, Shiea J, Zeng YB, Dobson G, Brassell S, Eglinton G (1989a) Lipid biochemical markers and the composition of microbial mats. In: Cohen Y, Rosenburg E (eds) Microbial Mats: Physiological ecology of benthic microbial communities. Am Soc Microbiol, Wash DC pp 439–454Google Scholar
  30. Ward DM, Weiler R, Shiea J, Castenholz RW, Cohen Y (1989b) Hot spring microbial mats: anoxygenic and oxygenic mats of possible evolutionary significance. In: Cohen Y, Rosenburg E (eds) Microbial Mats: Physiological ecology of benthic microbial communities. Am Soc Microbiol, Wash DC pp 3–15Google Scholar
  31. Ward DM, Weiler R, Bateson MM (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345: 63–65CrossRefGoogle Scholar
  32. Ward DM, Bateson MM, Weller R, Ruff AL (1992) Ribosomal RNA analysis of microorganisms as they occur in nature. Adv Microbial Ecology 12:219–286Google Scholar
  33. Waterbury, JB, Rippka R (1989) Subsection I. Order Chroococcales. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s Manual of Systematic Bacteriology, vol. 3. Williams and Wilkins, Baltimore, MD, pp 1728–1746Google Scholar
  34. Weller R, Bateson MM, Heimbuch BK, Kopczinski ED, Ward DM (1992) Uncultivated cyanobacteria, Chloroflexus-like inhabitants and spirochete-like inhabitants of a hot spring microbial mat. Appl Environ Microbiol 58:3964–3969Google Scholar
  35. Wiegel J, Ljungdahl LG (1981) Thermoanaerobium ethanolicus gen. nov., spec, nov., a new, extreme thermophilic, anaerobic bacterium. Arch Microbiol 128:343–348CrossRefGoogle Scholar
  36. Wiegel J, Ljungdahl LG, Rawson JR (1979) Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum. J Bacteriol 139:800–810Google Scholar
  37. Wiegel J, Braun M, Gottschalk G (1981) Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr Microbiol 5:255–260CrossRefGoogle Scholar
  38. Zarilla KA, Perry JJ (1984) Thermoleophilum album gen. nov. and sp. nov., a bacterium obligate for thermophily and n-alkane substrates. Arch Microbiol 137:286–290CrossRefGoogle Scholar
  39. Zarilla KA, Perry JJ (1986) Deoxyribonucleic acid homology and other comparisons among obligately thermophilic hydrocarbonoclastic bacteria, with a proposal for Thermoleophilum minutum sp. nov. Int J System Bacteriol 36:13–16CrossRefGoogle Scholar
  40. Zeikus JG, Wolfe RS (1972) Methanobacterium thermoautotrophicum sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109:707–713Google Scholar
  41. Zeikus JG, Hegge PW, Anderson MA (1979) Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 122:41–48CrossRefGoogle Scholar
  42. Zeikus JG, Ben-Bassat A, Hegge PW (1980) Microbiology of methanogenesis in thermal, volcanic environments. J Bacteriol 143:432–440Google Scholar
  43. Zeikus, JG, Dawson MA, Thompson TE, Ingvorsen K, Hatchikian EC (1983) Microbial ecology of volcanic sulphidogenesis: isolation and characterization of Thermodesulfobacterium commune gen. nov. and sp. nov. 129:1159–1169Google Scholar
  44. Zeng YB, Ward DM, Brassell S, Eglinton G (1992a) Biogeochemistry of hot spring environments. 2. Lipid compositions of Yellowstone (Wyoming, USA) cyanobacterial and Chloroflexus mats. Chem Geol 95:327–345CrossRefGoogle Scholar
  45. Zeng YB, Ward DM, Brassell S, Eglinton G (1992b) Biogeochemistry of hot spring environments. 3. Apolar and polar lipids in the biologically active layers of a cyanobacterial mat. Chem Geol 95:347–360CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • David M. Ward
    • 1
  • Michael J. Ferris
    • 1
  • Stephen C. Nold
    • 1
  • Mary M. Bateson
    • 1
  • Eric D. Kopczynski
    • 1
  • Alyson L. Ruff-Roberts
    • 1
  1. 1.Department of MicrobiologyMontana State UniversityBozemanUSA

Personalised recommendations