Microbial Mats pp 173-182 | Cite as

Light and electron microscopy in microbial mat research: An overview

  • John F. Stolz
Part of the NATO ASI Series book series (volume 35)


A variety of traditional techniques for light microscopy (e.g., differential interference contrast, phase contrast, fluorescence) and electron microscopy (transmission and scanning) have been used to obtain valuable information on the structure and species composition of microbial mat communities. Recent advances in techniques and instrumentation for microscopy are providing new tools for studying these communities in situ. Innovations in immunohistochemistry and molecular biology allow in situ labeling of specific microorganisms with fluorophores or gold particles which have been conjugated to antibodies or oligonucleotides. Digital image analysis software and confocal laser microscopy have made serial sections and 3-D reconstruction possible, providing structural data on biofilms, microbial mats, and microfossils in petrographic sections. This review will highlight a few examples of these new technologies with emphasis on those which have potential use in microbial mat studies.


Phototrophic Bacterium Magnetotactic Bacterium Benthic Microbial Community Digital Image Analysis Software Microcoleus Chthonoplastes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amann RI, Krumholz L, Stahl DA (1990) Fluorescent oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172: 762–770Google Scholar
  2. Amann RI, Zarda B, Stahl DA, Schleifer K-H (1992) Identification of individual prokaryotic cells by using enzyme-labeled rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 58: 3007–3011Google Scholar
  3. Carpenter EJ, Bergman B, Dawson R, Siddiqui PJA, Soderback E, Capone DG (1992) Glutamine synthetase and nitrogen cycling in colonies of the marine diazotrophic cyanobacterium Trichodesmium spp. Appl Environ Microbiol 58: 3122–3129Google Scholar
  4. Caldwell DE, Korber DR, Lawrence JR (1992) Confocal laser microscopy and digital image analysis in microbial ecology. Adv Microbiol Ecol 12: 1–67Google Scholar
  5. Cohen Y, Krumbein WE, Shilo M (1977) Solar Lake (Sinai) 2. Distribution of photosynthetic microorganisms and primary production. Limnol Oceanogr 22: 609–610CrossRefGoogle Scholar
  6. Cohen Y (1984) The Solar Lake cyanobacterial mats: strategies of photosynthetic life under sulfide. In: Cohen Y, Castenholz RW, Halvorson HO (eds) Microbial mats: Stromatolites. Alan R Liss Inc, NY, pp 133–148Google Scholar
  7. Cohen Y, Castenholz RW, Halvorson HO (eds) (1984) Microbial mats: Stromatolites. Alan R Liss Inc, New YorkGoogle Scholar
  8. Cohen Y, Rosenberg E (eds) (1989) Microbial mats: physiological ecology of benthic microbial communities. ASM Publishing, Washington DCGoogle Scholar
  9. D’Amelio ED, Cohen Y, Des Marais DJ (1987) Association of a new type of gliding filamentous phototrophic bacterium inside bundles of Microcoleus chthonoplastes in hypersaline cyanobacterial mats. Arch Microbiol 147: 528–534Google Scholar
  10. D’Amelio ED, Cohen Y, Des Marais DJ (1989) Comparative functional ultrastructure of two hypersaline submerged cyanobacterial mats: Guerrero Negro, Baja California Sur, Mexico, and Solar Lake, Sinai, Egypt. In: Cohen, Y, Rosenberg, E (eds) Microbial mats: physiological ecology of benthic microbial communities, ASM, Washington DC, pp 97–113Google Scholar
  11. DeLong EF, Wickham GS, Pace NR (1989) Phylogenetic strains: ribosomal RNA based probes for the identification of single cells. Science 243: 1360–1363CrossRefGoogle Scholar
  12. DeLong EF, Frankel RB, Bazylinski DA (1993) Multiple evolutionary origins of magnetotaxis in bacteria. Science 259: 803–806CrossRefGoogle Scholar
  13. Devereux R, Kane MD, Winfrey J and Stahl DA (1992) Genus-specific and group-specific hybridization probes for determinative and environmental studies of sulfate-reducing bacteria. Syst Appl Microbiol 15: 601–609.Google Scholar
  14. Feick RG, Fuller RC (1984) Topography of the photosynthetic apparatus of Chloroflexus aurantiacus. Biochem 23: 3693–3700CrossRefGoogle Scholar
  15. Giovannoni SJ, DeLong DE, Olsen GJ, Pace NR (1988) Phylogenetic group-specific oligonucleotide probes for the identification of single microbial cells. J Bacteriol 170: 720–726Google Scholar
  16. Haugland RP (1992) Molecular probes, handbook of fluorescent probes and research chemicals. Molecular Probes Inc, EugeneGoogle Scholar
  17. Johnson I (1992) Optical properties of fluorescent probes. In: Haugland RP (ed) Molecular probes, handbook of fluorescent probes and research chemicals. Molecular Probes Inc, Eugene, pp 1–4Google Scholar
  18. Lillebaek R (1992) The distribution of sulfate-reducing bacteria (SRB) in estuarine/marine sediments as revealed by specific antibodies. Abstracts of the Sixth International Symposium on Microbial Ecology 150Google Scholar
  19. Macario AJL, Conway de Macario E (1992) Antibody probes and immunotechnology for direct identification of microbes in complex ecosystems. Abstracts of the Sixth International Symposium on Microbial Ecology 18Google Scholar
  20. Margulis L, Barghoorn ES, Ashendorf D, Banerjee S, Chase D, Francis S, Giovannoni S, Stolz J (1980) The microbial community in the layered sediments at Laguna Figueroa, Baja California, Mexico: does it have precambrian analogues. Precamb Res 11: 93–123CrossRefGoogle Scholar
  21. Margulis L, Hinkle G, Stolz J, Craft F, Esteve I, Guerrero R (1990) Mobilifllum chasei: morphology and ecology of a spirochete from an intertidal stratified microbial comunity. Arch Microbiol 153: 422–427CrossRefGoogle Scholar
  22. McSweeny CS, Mackie RI, Odenyo AA, Stahl DA (1993) Development of oligonucleotide probe targeting 16S rRNA and its application for detection and quantitation of the ruminai bacterium Synergistes jonesii in a mixed-population chemostat. Appl Environ Microbiol 59: 1607–1612Google Scholar
  23. Nicholson JAM, Stolz JF, Pierson BK (1987) Structure of a microbial mat at Great Sippewissett Marsh, Cape Cod, Massachusetts. FEM Microbiol Ecol 45: 343–364CrossRefGoogle Scholar
  24. Olson GJ, Lane DJ, Giovannoni SJ, Pace NR, Stahl DA (1986) Microbial ecology and evolution: a ribosomal RNA approach. Ann Rev Microbiol 40: 337–365CrossRefGoogle Scholar
  25. Paerl HW, Priscu JC, Brawner DL (1989) Immunochemical localization of nitrogenase in marine Trichodesmium aggregates: relationship to N2 fixation potential. Appl Environ Microbiol 55: 2965–2975Google Scholar
  26. Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford 173 pGoogle Scholar
  27. Ramsing BR, Kühl M, and Jørgensen BB (1993) Distribution of sulfate reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes. Appl Environ Microbiol 59: 3840–3849.Google Scholar
  28. Stal L, Bergman B (1990) Immunological characterization of nitrogenase in the filamentous non-heterocystous cyanobacterium Oscillatoria limosa. Planta (Berlin) 182: 287–291CrossRefGoogle Scholar
  29. Schopf JW (1993) Microfossils of the early archean apex chert: new evidence of the antiquity of life. Science 260: 640–646CrossRefGoogle Scholar
  30. Shivery JM, Bryant DA, Fuller RC, Konopka AE, Stevens SEJr, Strohl WR (1988) Functional inclusion bodies in prokaryotic cells. Int Rev Cytol 113: 35–79CrossRefGoogle Scholar
  31. Sieracki ME, Johnson PW, Sieburth, JM (1985) Detection, enumeration, and sizing of planktonic bacteria by image-analyzed epifluorescence microscopy. Appl Environ Microbiol 49: 799–810Google Scholar
  32. Sieracki ME, Reichenbach SE, Webb KL (1989) Evaluation of automated threshold selection methods for accurately sizing microscopic fluorescent cells by image analysis. Appl Environ Microbiol 55: 2762 – 2772Google Scholar
  33. Sprague SG, Fuller RC (1991) The green prototrophic bacteria and Heliobacteria. In: Stolz JF (ed) Structure of phototrophic prokaryotes. CRC Press, Boca Raton, pp 79–103Google Scholar
  34. Spring S, Amann R, Ludwid W, Schleifer K-H, Petersen N (1992) Phylogenetic diversity and identification of nonculturable magnetotactic bacteria. System Appl Microbiol 15:116–122Google Scholar
  35. Stolz JF (1983) Fine structure of the stratified microbial community at Laguna Figueroa, Baja California, Mexico. I. Methods of in situ study of the laminated sediments. Precamb Res 20: 479–492Google Scholar
  36. Stolz JF (1984) Fine structure of the stratified microbial community at Laguna Figueroa, Baja California, Mexico. II. Transmission electron microscopy as a diagnostic tool in studying microbial communities in situ. In: Cohen Y, Castenholz RW, Halvorson HO (eds) Microbial Mats: Stromatolites. Alan R Liss Inc, NY pp 23–38Google Scholar
  37. Stolz JF (1990) Distribution of phototrophic microbes in the flat laminated microbial mat at Laguna Figueroa, Baja California, Mexico. BioSyst 345–357Google Scholar
  38. Stolz JF (ed) (1991) Structure of phototrophic prokaryotes. CRC Press, Boca Raton.Google Scholar
  39. Stolz JF (1993) Magnetosomes. J Gen Microbiol 139: 1663–1670Google Scholar
  40. Tsien HC, Bratina BJ, Tsuji K, Hanson RS (1990) Use of oligonucleotide signature probes for identification of physiological groups of methylotrophic bacteria. Appl Environ Microbiol 56: 2858–2865Google Scholar
  41. Universal Imaging Corporation (1992) Deconvolution, Image 1 Insights 4: 1–2Google Scholar
  42. Viles CL, Sieracki ME (1992) Measurement of marine picoplankton cell size by using a cooled charge-coupled device camera with image-analyzed fluorscence microscopy. Appl Environ Microbiol 58: 584–592Google Scholar
  43. Walter MR (ed) (1976) Stromatolites. Elsevier, AmsterdamGoogle Scholar
  44. Ward DM, Weiler R, Bateson MM (1990) 16S rRNA sequencing reveal uncultured inhabitants of a well-studied thermal community. FEMS Microbiol Rev 75: 105–116CrossRefGoogle Scholar
  45. Ward DM, Bateson MM, Well R, Ruff-Roberts A (1992) Ribosomal RNA analysis of microorganisms as they occur in nature. Adv Microb Ecol 12: 219–286Google Scholar
  46. Weller R, Bateson MM, Heimbuch BK, Kopczynski ED, Ward DM (1992) Uncultivated cyanobacteria, Chloroflexus-like inhabitants, and spirochete-like inhabitants of a hot spring microbial mat. Appl Environ Microbiol 58: 3964–3969Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • John F. Stolz
    • 1
  1. 1.Department of Biological SciencesDuquesne UniversityPittsburghUSA

Personalised recommendations