Skip to main content

On Free Boundary Problems and Amoeboid Motion

  • Conference paper
Biomechanics of Active Movement and Division of Cells

Part of the book series: NATO ASI Series ((ASIH,volume 84))

Abstract

The actin cytoskeleton of amoeboid cells can be regarded as a composite material composed of an aqueous solvent and a network of filamentous polymers. Accordingly, a family of models of the cytoskeletal motility of amoeboid cells can be formulated using continuum mixture theory as a basic language. Our aim is to elucidate the structure of such models and to give some examples of applications to representative problems of cytoskeletal dynamics and amoeboid motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht-Buehler, G. (1980). Autonomous movements of cytoplasmic fragments. Proc. Natl. Acad. Sci. USA 77: 6639–6644.

    Article  ADS  Google Scholar 

  • Allen, R.D. (1961). Ameboid movement. In: The Cell, Vol. II, J. Brächet and A.E. Mirsky, eds. Academic Press, New York, pp. 135–216.

    Google Scholar 

  • Alt, W. (1987). Mathematical models in actin-myosin interaction. In: Fortschritte der Zoologie, Band 34: Nature and Function of Cytoskeletal Proteins in Motility and Transport, Hrgs., Wholfarth-Bottermann. Gustav Fischer Verlag, Stuttgart and New York, pp. 219–230.

    Google Scholar 

  • Bereiter-Hahn, J.M. Luck, T. Miebach, H.K. Stelzer and M. Voth. (1990). Spreading of trypinized cells: Cytoslceletal dynamics and energy requirements. J. Cell Sci 96: 171–188.

    Google Scholar 

  • Bowen, R.M. (1980). Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18: 1129–1148.

    Article  MATH  Google Scholar 

  • Crick, F.H.C. and A.F.W. Hughes (1950). The physical properties of cytoplasm: A study by means of the magnetic particle method. Exp. Cell Res. 1: 37–80.

    Article  Google Scholar 

  • De Bary, A. (1864). Die Mycetozen. W. Engelmann, Leipzig. Dellinger, O.P. (1906). Locomotion of Amoebae and allied forms. J.Exp. Zool. 3: 337–358.

    Article  Google Scholar 

  • Dellinger, O.P. (1906). Locomotion of Amoebae and allied forms. J. Exp. Zool. 3: 337–358.

    Article  Google Scholar 

  • Dembo, M., F. Harlow, and W. Alt (1984). The biophysics of cell surface motility. In: Cell Surface Dynamics: Concepts and Models, C. DeLisi, A. Perelson, and F. Wiegel, eds. Marcel Dekker, New York, pp. 495–542.

    Google Scholar 

  • Dembo, M., M. Maltrud, and F. Harlow (1986). Numerical studies of unreactive contractile networks. Biophys. J. 50: 123–137.

    Article  Google Scholar 

  • Dembo, M. (1986). The mechanics of motility in dissociated cytoplasm. Biophys. J. 50: 1165–1183.

    Article  Google Scholar 

  • Dembo, M. and F. Harlow (1986). Cell motion, contractile networks, and the physics of interpenetrating reactive flow. Biophys. J. 50: 109–121.

    Article  Google Scholar 

  • Dembo, M. (1989). The mechanics and control of the cytoskeleton in Amoeba proteus. Biophys. J. 55: 1053–1080.

    Article  Google Scholar 

  • Dong, C., R. Skalak, K-L.P. Sung, G.W. Schmidt-Schoenbein and S. Chien. (1988). Passive peformation analysis of human leukocytes. J. Biomech. Eng. 110: 27–36.

    Article  Google Scholar 

  • Dong, C., R. Skalak and K-L.P. Sung. (1991). Cytoplasmic rheology of Passive Neutrophils. Biorheology 28: 557–567.

    Google Scholar 

  • Dong, C., and R. Skalak. (1992). Leukocyte Deformability: Finite Element modeling of large viscoelastic deformation. J. Tlieor. Biol. 158: 173–193.

    Article  Google Scholar 

  • Drew, D.A., and L.A. Segel (1971). Averaged equations for two phase flow. Stud. Appl. Math. 50: 205–231.

    MATH  Google Scholar 

  • Dujardin, F. (1835). Recherches sur les organismes inférieurs. Ann. Sci. nat. Zool. 4: 343–377.

    Google Scholar 

  • Dujardin, F. (1838). Memoire sur l’organisation des Infusoires. Ann. Sci. nat. Zool. 10: 230–315.

    Google Scholar 

  • Dunn, G.A. (1980). Mechanisms of fibroblast locomotion. In: Cell Adhesion and Motility, A.S.G. Curtis and J.D. Pitts, eds. Cambridge Univ. Press, London, pp. 409–424.

    Google Scholar 

  • Ehrenberg, C.G. (1830). Organisation, Systematic und Geographisches Verhaltniss der Infusionsthierchen. F. Dummler, Berlin.

    Google Scholar 

  • Ehrenberg, C.G. (1832). Zur Erkenntniss der Organisation in der Rich¬tung des Kleinsten Raumes. F. Dummler, Berlin.

    Google Scholar 

  • Evans, E.A. and B. Kukan (1984). Passive material behavior of granulocytes based on large deformation and recovery after deformation tests. Blood 64: 1028–1035.

    Google Scholar 

  • Evans, E., and A. Yeung. (1989). Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J. 50: 151–160.

    Article  Google Scholar 

  • Evans, E. and M. Dembo (1990). Physical Model for Phagocyte Motility: Local Growth of a Contractile Network from a Passive Body. Nato ASI Series. Vol H42. Biomechanics of Active Movement and Deformation of Cells. N. Akkas ed. Springer Verlag Berlin, 185–214.

    Google Scholar 

  • Ezzell, R.M., A.J. Brothers, and W.Z. Cande (1983). Phosporylation- dependent contraction of actomyosin gels from amphibian eggs. Nature 306: 620–622.

    Article  ADS  Google Scholar 

  • Geiger, B. (1983). Membrane-cytoskeleton interaction. Biochem. Biophys. Acta. 737: 305–341.

    Google Scholar 

  • Gelfand, V.I., N.A. Glushankova, O.Y. Ivanova, L.A. Mittelman, O.Y. Pletyushkina, J.M. Vasiliev, and I.M. Gelfand (1985). Polarization of cytoplasmic fragments microsurgically detached from mouse fibrob¬lasts. Cell Biol. Intern. Rep. 9: 883–892.

    Article  Google Scholar 

  • Grebecki, A. (1984). Relative motion in Amoeba proteus in respect to adhesion sites. I. Behavior of monotactic forms and the mechanism of fountain phenominon. Protoplasm 123: 116–134.

    Article  Google Scholar 

  • Happel, J. and H. Brenner (1973). Low Reynolds Number Hydrodynamics. Noordhoff Int., Leyden, p. 553.

    Google Scholar 

  • Hartwig, J.H., R. Neiderman, and S.E. Lind (1985). Cortical actin structures and their relation to mammalian cell movements. In: Sub-cellular Biochemistry; Vol. 11, D.B. Roodyn, ed. Plenum Press, New York, pp. 1–49.

    Google Scholar 

  • Hartwig, J.H. and H.L. Yin (1988). The organization and regulation of the macrophage actin skeleton. Cell Motil. Cytoskel. 10: 117–125.

    Article  Google Scholar 

  • Heitzmann, C. (1873). Untersuchungen unber das Protoplasma. I. Bau des Protoplasmas. Sitzber. kaiserl. Akad. WissMath.-Naturwiss. CI. 67 (111. abth.): 100–115.

    Google Scholar 

  • Hill, T.L. and M.W. Kirschner (1982). Bioenergetics and kinetics of mi-crotubule and actin filament assembly-disassembly. Int. Rev. Cytol. 78: 1–125.

    Article  Google Scholar 

  • Hiramoto, Y. (1969). Mechanical properties of the protoplasm of the sea urchin egg, I. Unfertilized egg. Exp. Cell Res. 56: 201–208.

    Article  Google Scholar 

  • Hochmuth, R.M., H.P. Ting-Beall, B.B. Beaty, D. Needham and R. Tran-Son-Tay. (1993). Viscosity of passive human neutrophils undergoing small deformations. Biophys. J. 64: 1596–1601.

    Article  Google Scholar 

  • Hughes, T.J.R. (1987). The Finite Element Method. Prentice Hall, Englewood Cliffs, New Jersey, p. 803.

    Google Scholar 

  • Ishijima, A., T. Doi, K. Sakurada and T. Yanagida. (1991). Sub- piconewton force Auctions of actomyosin in vitro. Nature 352: 301–306.

    Article  ADS  Google Scholar 

  • Izzard, C.S. (1988). A precursor of the focal contact in cultured fibrob-lasts. Cell Motil. Cytoskel. 10: 137–142.

    Article  Google Scholar 

  • Janmey, P.A. (1991). Mechanical properties of cytoskeletal polymers. Curr. Opin. Cell Biol. 2: 4–11.

    Article  Google Scholar 

  • Jennings, H.S. (1904). Contributions to the study of the behavior of lower organisms. 6. The movements and reactions of Amoeba. Carnegie Inst. Wash. Pub. 16: 129–234.

    Google Scholar 

  • Jeon, K.W. and M.S. Jeon. (1975). Cytoplasmic filaments and cellular wound healing in Amoeba proteus. J. Cell Biol. 67: 243–249.

    Article  Google Scholar 

  • Kamiya, N. (1986). Some motility characteristics of living cytoplasm from observations on Physarium. In: Cell Motility: Mechanism and Regulation. H. Ishikawa, S. Hatano, and H. Sato, eds. Alan R. Liss, New York, pp. 577–585.

    Google Scholar 

  • Korn, E.D. (1982). Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol. Rev. 62: 672–737.

    Google Scholar 

  • Kuroda, K. (1979). Movement of cytoplasm in a membrane-free system. In: Cell Motility: Molecules and Organization, S. Hatano, H. Ishikawa, and H. Sato, eds. Univ. Park Press, Baltimore, pp. 347–362.

    Google Scholar 

  • Lovtrup, S. and A. Pigon (1951). Diffusion and active transport of water in the amoeba Chaos chaos. L. Comptes Rendus des Travaux du Lab. Carlsberg, Ser. chim. 28: 1–36.

    Google Scholar 

  • Lyass, L.A., A.D. Bershadsky, V.I. Gelfand, A.S. Serpinskaya, A.A. Stavrovskaya, J.M. Vasiliev, and I.M. Gelfand (1984). Multinucleation-induced improvment of the spreading of transformed cells on the substratum. Proc. Natl. Acad. Sei. USA. 81: 3098–3102.

    Article  ADS  Google Scholar 

  • Mast, S.O. (1926). Structure, movement, locomotion and stimulation in Amoeba. J. Morph. Physiol 41: 347–425.

    Article  Google Scholar 

  • Matsudaria, P. and P. Janmey (1988). Pieces in the act in-severing protein puzzle. Cell 54: 139–140.

    Article  Google Scholar 

  • McClendon, J.F. (1909). Protozoan studies. J. Exp. Zool. 6: 265–287.

    Article  Google Scholar 

  • McNeil, P.L. (1991). Cell wounding and healing. American Scientist 79: 222–235.

    ADS  Google Scholar 

  • McNiven, M.A., M. Wang, and K.R. Porter (1984). Microtubule polarity and the direction of pigment transport reverse simultaneously in surgically severed melanopore arms. Cell 37: 753–765.

    Article  Google Scholar 

  • Needham, D., and R.M. Hochmuth (1990). Rapid flow of passive neu-trophils into a fim pipet and measurments of cytoplasmic viscosity. J. Biomech. Engr. 112: 269–276.

    Article  Google Scholar 

  • Needham,D., and R.M. Hochmuth. (1992). A sensitive measure of surface stress in the resting neutrophil. (Biophys. J. 61: 1664–1670.

    Google Scholar 

  • Nowakowska, G. (1978). Twisting of suspended monotactic specimens of Amoeba proteus. Acta Protozool. 17: 347–352.

    Google Scholar 

  • Oosawa, F., S. Fujime, S. Ishiwatwa, and K. Mihashi (1973). Dynamic property of F-actin and thin filament. Cold Spring Harbor. Symp. Quant Biol. 37: 277–284.

    Google Scholar 

  • Oster, G.F. and A.S. Perelson (1987). The physics of cell motility. J. Cell Sci. Suppl. 8: 35–54.

    Google Scholar 

  • Pantin C.F.A. (1923). On the physiology of amoeboid movement. I. J. Marine Biol. Ass. 13: 24–69.

    Article  Google Scholar 

  • Pantin C.F.A. (1924). On the physiology of amoeboid movement. II. Brit. J. Exp. Biol. 1: 519–538.

    Google Scholar 

  • Peskin, C.S., G.M. Odell and G.F. Oster (1993). Cellular motions and thermal fluctuations: The Brownian ratchet. Biophys. J. 65: 316–324.

    Article  Google Scholar 

  • Pollard, T.D. and S. Ito (1970). Cytoplasmic filaments of Amoeba pro¬teus: I. The role of filaments in consistency changes and movement. J. Cell Biol 46: 267–289.

    Article  Google Scholar 

  • Pollard, T.D., S.C. Selden, and P. Maupin (1984). Interaction of actin with microtubules. J. Cell Biol. 99: 33s–37s.

    Article  Google Scholar 

  • Pollard, T.D. and J.A. Cooper (1986). Actin and actin-binding pro¬teins: A critical evaluation of mechanisms and functions. Annu. Rev. Biochem. 55: 987–1035.

    Article  Google Scholar 

  • Porter K.R. (1984). The cytomatrix: A short history of its study. J. Cell Biol. 99: 3s–12s.

    Article  Google Scholar 

  • Rash, P.J., and D.L. Williamson. (1990). On shape-preserving interpo-lation and semi-Lagrangian Transport. Siam J. Sci. Stat. Comput. 11: 656–687.

    Article  Google Scholar 

  • Rhumbler, L. (1898). Physikalische Analyse von Lebenserscheinungen der Zelle. I. Bewegung, Nahrungsaufname, Defakation, Vacuolen- Pulsation und Gehausebau bei lobosen Rhizopoden. Arch. Entwmech. Org. 7: 103–198.

    Google Scholar 

  • Sato, M., T.Z. Wong, and R.D. Allen (1983). Rheological properties of living cytoplasm: Endoplasm of PSato, M., T.Z. Wong, D.T. Brown, and R.D. Allen (1984). Rheological properties of living cytoplasm: Endoplasm of Physarium plasmodium. J. Cell Biol. 97: 1089 - 1097.

    Article  Google Scholar 

  • A Preliminary investigation of squid axoplasm Loligo pealei. Cell Motility 4:7–23.

    Google Scholar 

  • Sato, M., W.H. Schwartz, and T.D. Pollard (1987). Dependence of the mechanical properties of actin/alpha-actinin gels on deformation rate. Nature 325: 828–830.

    Article  ADS  Google Scholar 

  • Schroder, T.E. (1975). Dynamics of the contractile ring. In: Molecules and Cell Movement, S. Inoue and R.E. Stephens, eds. Raven Press, New York, pp. 305–334.

    Google Scholar 

  • Schulze, F.E. (1875). Rhizopodenstudien IV. Arch mik. Anat. 11: 329–353.

    Article  Google Scholar 

  • Seifriz, W. (1921). Observations on some physical properties of proto¬plasm by aid of microdissection. Ann. Bot. 35: 269–296.

    Google Scholar 

  • Simon, S.I., and G.W. Schmidt-Schoenbein. (1988). Biophysical aspects of microsphere engulfment by human neutrophils. Biophys. J. 53: 163–173.

    Article  Google Scholar 

  • Stossel, T.P., C. Chaponnier, R.M. Ezzell, J.H. Hartwig, P.A. Janmey, D.J. Kwiatkowski, S.E. Lind, D. Smith, F.S. Southwick, H.L. Yin, and K.S. Zaner (1985). Nonmuscle actin binding proteins. Annu. Rev. Cell Biol. 1: 353–402.

    Article  Google Scholar 

  • Stossel, T.P. (1990). How cells crawl. American Scientist 78: 408–423.

    ADS  Google Scholar 

  • Stossel, T.P. (1993). On the crawling of animal cells. Science 260: 1086–1094.

    Article  ADS  Google Scholar 

  • Sung, K.-L.P., C.Dong, G.W. Schmidt-Schoenbein, S. Chein and R. Skalak. (1988). Leukocyte relaxation properties. Biophys. J. 53: 331–336.

    Article  Google Scholar 

  • Taylor, D.L., J.S. Condeelis, P.L. Moore, and R.D. Allen (1973). The contractile basis of amoeboid movement. I. The chemical control of motility in isolated cytoplasm. J. Cell Biol. 59: 378–394.

    Article  Google Scholar 

  • Taylor, D.L. and J.S. Condeelis (1979). Cytoplasmic structure and con-tractility in amoeboid cells. Internat. Rev. Cytol. 56: 57–114.

    Article  Google Scholar 

  • Thompson, C.M. and L. Wolpert (1963). The isolation of motile cytoplasm from Amoeba proteus. Exp. Cell Res. 32: 156–160.

    Article  Google Scholar 

  • Tilney, L.G. and S. Inoue (1982). Acrosomal reaction of Thyone sperm. II. The kinetics and possible mechanism of acrosomal process elongation. J. Cell Biol. 93: 820–827.

    Article  Google Scholar 

  • Tran-Son-Tay, R., D. Needham, A. Yeung, and R.M. Hochmuth. 1991. Time-dependent recovery of passive neutrophils after large deforma¬tion. Biophys. J. 60: 856–866.

    Article  Google Scholar 

  • Trusdell, C. and R.A. Toupin (1960). The Classical Field Theories, Handbuch der physik III/l, Springer-Verlag, Berlin.

    Google Scholar 

  • Valberg, P.A. and D.F. Albertini (1985). Cytoplasmic motions, rheology, and structure probed by a novel magnetic particle method. J. Cell Biol. 101: 130–140.

    Article  Google Scholar 

  • Wallich, G.C. (1863a). Further observations on an undescribed indige-nous Amoeba, with notices on remarkable forms of Acinophrys and Diffugia. Ann. Mag. Nat. Hist. ll(ser. 3 ): 365–371.

    Google Scholar 

  • Wallich, G.C. (1863b). On the value of distinctive characters in Amoeba. Ann. Mag. Nat. Hist. ll(ser. 3: 111–151.

    Google Scholar 

  • Wang, Y-L. (1985). Exchange of actin subunits at the leading edge of living fibroblasts: Possible role of treadmilling. J. Cell Biol. 101: 597–602.

    Article  Google Scholar 

  • Yagi, K. (1961). The mechanical and colloidal properties of amoeba protoplasm and their relations to the mechanism of amoeboid movement. Comp. Biochem. Physiol. 3: 73–91.

    Article  Google Scholar 

  • Yeung, A. and E. Evans (1989). Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipets. Biophys. J. 56: 139–149.

    Article  Google Scholar 

  • Zheng, Q. and D.C. Chang (1991). Reorganization of cytoplasmic structures during cell fusion. J. Cell Sci. 100: 431–442.

    Google Scholar 

  • Zhu, C. and R. Skalak (1988). A continuum model of protrusion of pseudopod in leukocytes. Biophys. J. 54: 1115–1138.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dembo, M. (1994). On Free Boundary Problems and Amoeboid Motion. In: AkkaÅŸ, N. (eds) Biomechanics of Active Movement and Division of Cells. NATO ASI Series, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78975-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78975-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78977-9

  • Online ISBN: 978-3-642-78975-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics