Skip to main content

Modelling of Biological Polymers : Discrete and Continuum Mechanics Formulations

  • Conference paper
Biomechanics of Active Movement and Division of Cells

Part of the book series: NATO ASI Series ((ASIH,volume 84))

  • 180 Accesses

Abstract

Proteins and chromosomes are the essential polymers of life. The proteins are the primary matter for sustaining life through constituting most of the living matter along with storing and using energy. The DNA is at the origin of life by carrying the genetic code and performing the functions of replication and transcription for the production of protein. Their dynamics are thought to determine their biological functions as well as their malfunction which have vital consequences. Similarly, and stability statics studies are also important in determining the material properties and structure of these polymers. The information provided by statics can be used either for its own sake such as for understanding the strength and deformation of muscles or provides the necessary data to be used for dynamical studies. Stability studies on the other hand would be useful for instance in understanding the formation of beta sheets and the folding of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Askar A., “Lattice Dynamical Foundations of Continuum Theories of Solids: Elasticity, Piezoelectricity, Vise o elasticity, Plasticity”, World Scientific, Singapore (1988)

    Google Scholar 

  • Askar A., Dynamics of Single alpha and Double DNA helices, in “Continuum Models and Discrete Systems” Vol II, ed, G. A. Maugin, Longman Scientific and Technical and John Wiley & Sons, NY (1991)

    Google Scholar 

  • Askar A., Akoz Y., Bull. Istanbul Technical University, to appear

    Google Scholar 

  • Askar A., Space B., Rabitz H. Long time Molecular Dynamics; Pico second time steps and the subspace method (to be published)

    Google Scholar 

  • Born M., Hwang K., “ Dynamical Theories of Crystal Lathees”, Oxford University Pres (1954)

    Google Scholar 

  • Davydov A. S., (1985). “Solitons in Molecular Systems”, Reidel, Dordrecht

    MATH  Google Scholar 

  • Dickerson R. E., The DNA helix and how it is read, Sci. Amer. 249, 94 (1983)

    Article  Google Scholar 

  • Freifelder D., “Molecular Biology”, Jones and Barlett, Boston 1987

    Google Scholar 

  • Karplus J. A. M. and Mc Cammon “The Dynamics of Proteins”, Sci. Amer. 254, 42 (1986)

    Article  Google Scholar 

  • Krumhansl J. A., and Alexander D. M., (1983) Nonlinear dynamics and conformal excitations in bio molecular materials. In “Structure and Dynamics:Nuclear acids and proteins”, ed. Clemente E. and Sarma R. H.. Adenine Press, New York

    Google Scholar 

  • Lomdahl P.S., Layne S. P., and Bigio I. J., Solitons in biology (1985). Los Alamos Sciences, Spring Issue, 4–21

    Google Scholar 

  • Mc Cammon J. A., and Harwey S. C., “Dynamics of Proteins and Nucleic Acids”, Cambridge University Press, Cambridge 1987

    Google Scholar 

  • Muto V., Lamdahl P. S., Christiansen P. L., Phys Rew A, 42, 7452 (1990)

    Google Scholar 

  • Peyrard M., Phevmatikes S. T., Flytzanis N., Phys-Rev. A 36, 903 (1987)

    Google Scholar 

  • Peyrard M., and Bishop A. R., (1989) Statistical mechanics of a nonlinear model for DNA denaturation. Preprint

    Google Scholar 

  • Peyrard M., Dauvxois T., Bishop A. R., Dynamics of thermal denaturation of DNA

    Google Scholar 

  • Peyrard M., and Bishop A. R., in Proceedings of the 6th Intcrdisiplinary Workshop on Nonlinear Coherent Structures in Physics, Mechanics and Biological Systems ( 1989 ), Bartes M., J. Leon eds, Springer (1990)

    Google Scholar 

  • Remoissenet M., “Nonlinear Evolution Equations, Quasi- Solitons and Their Experimental Manifestation”, Proceedings of the Winter School in Theoretical Physics on Partially integrab1e nonlinear equations and their in physical applications, March 21–29

    Google Scholar 

  • Les Houches, France. K 1 u w e r Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Saenger W., “Principles of Nucleic Acid Structure”,Springer Verlag, NY (1984)

    Google Scholar 

  • Schlick T., Olsan W. K., J. Mol. Biol, (1987)

    Google Scholar 

  • Scott A. C., (1985a). Solitons in biological molecules. Comments Moll. Cell. Biophys., 3, 15–37

    Google Scholar 

  • Stryer L., Biochemistry, Freeman W. F. and Co., N.Y. (1981)

    Google Scholar 

  • Schrega H. A., Ad. Phys Org. Chem 6, 103 (1984)

    Article  Google Scholar 

  • Schlick T., Modelling and Minimization for Predicting Three - Dimensional Structures of Large Biological Molecules, PhD Thesis, Courant Institute, New York University, NY (1982)

    Google Scholar 

  • Takeno S., and Hornma S., Prog. Theor. Phys. 77, 548 (1987)

    Article  ADS  Google Scholar 

  • Thacher T., Rabitz H., Biophys J., Soc, 54, G 95 (1 9 88 )

    Google Scholar 

  • Thacher T., Rabitz H., Askar A., J. Chem Phys. 93, 4673 (1990)

    Article  ADS  Google Scholar 

  • Thacher T., Ganesan S., Askar A., Rabitz H. R., J.Chem Phys, 85, 3655 (1986)

    Article  ADS  Google Scholar 

  • Van Gunsteren W. F. and Karplus M., Macromolecules 1528, 15 (1982)

    Google Scholar 

  • Weiner J. H. and Askar A., Nature, 226, 842 (1970)

    Article  ADS  Google Scholar 

  • Ya Antonehende V., Davidov A. S., zolotar Yuk A. V., Phys. Stat, Solidib 146, 487 (1988)

    Google Scholar 

  • Yomosa S., Phys. Rev. A-27, 2120 (1983) and A 30, 474 (1984)

    ADS  Google Scholar 

  • Yomosa S., So1iton excitations in deoxyribonucleic acid (DNA) double helices. Phys. Rev. A- 27, 2120 - 2125, (1983)

    Article  MathSciNet  ADS  Google Scholar 

  • Yomosa S., (1984). Solitary excitations in deoxyribonucleic acid (DNA) double helices. Phys. Rev. A, 30, 474–480

    Article  ADS  Google Scholar 

  • Zhang Chun-Ting, Phys. Rev. A 35, 886 (1987)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Askar, A. (1994). Modelling of Biological Polymers : Discrete and Continuum Mechanics Formulations. In: Akkaş, N. (eds) Biomechanics of Active Movement and Division of Cells. NATO ASI Series, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78975-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78975-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78977-9

  • Online ISBN: 978-3-642-78975-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics