Cerebrovascular MR Imaging

  • J. Hennig
  • K. U. Wentz


This chapter presents an introduction to applications of cerebrovascular magnetic resonance angiography (MRA). The emphasis is placed on outlining experimental possibilities (and pitfalls) of angiographic techniques with a view to the clinical relevance of the respective examinations.


Tone Pulse Magnetic Resonance Angi Technique Magnetization Transfer Contrast Lower Flip Angle Blood Magnetic Resonance Angi 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wedeen VJ, Rosen BR, Buxton R, Edelman RR, Meuli R, Brady TJ (1985) MRI angiography and flow volume quantitation. Proc. IVth Ann. Meeting SMRM, London, p. 618.Google Scholar
  2. 2.
    Müri M, Juretschke HP, Bösch C, Hennig J, Brunner P (1985) The examination of the vascular system by methods of MR imaging. Proc. IVth Ann. Meeting SMRM, London, p. 589.Google Scholar
  3. 3.
    Singer JR, Crooks LE (1983) Nuclear magnetic resonance blood flow measurements in the human brain. Science 221: 654–656.PubMedCrossRefGoogle Scholar
  4. 4.
    Wehrli FW, MacFall JR, Axel L, Shutts D, Glover GH, Herfkens RJ (1984) Approaches to in-plane and out-of-plane flow imaging.Google Scholar
  5. 5.
    Bradley WG, Waluch V (1985) Blood flow: magnetic resonance imaging. Radiology 154: 443.PubMedGoogle Scholar
  6. 6.
    Wehrli FW, Shimakawa A, Gullberg GT, MacFall JR (1986) Time-of-flight MR flow imaging: selective saturation recovery with gradient refocussing. Radiology 160: 781–785.PubMedGoogle Scholar
  7. 7.
    Dixon WT, Du LN, Gado M et al. (1986) Projection angiograms of blood labeled by adiabatic fast passage. Magn. Reson. Med. 3: 454.PubMedCrossRefGoogle Scholar
  8. 8.
    Gullberg GT, Wehrli FW, Shimakawa A et al. (1987) MR vascular imaging with fast gradient refocusing pulse sequence and reformatted images from transaxial sections. Radiology 165: 241.PubMedGoogle Scholar
  9. 9.
    Edelman RR, Wentz KU, Mattle H et al. (1989) Projection arteriography and venography: initial clinical results with MR. Radiology 172: 351.PubMedGoogle Scholar
  10. 10.
    Keller PJ, Drayer BP, Fram EK et al. (1989) MR angiography with two-dimensional acquisition and three-dimensional display. Radiology 173: 527.PubMedGoogle Scholar
  11. 11.
    Wehrli FW, Shimakawa A, MacFall JR et al. (1985) MR imaging of venous and arterial flow by a selective saturation — recovery spin echo (SSRSE) method (1985). J. Comput. Assist. Tomogr. 9: 537–545.PubMedCrossRefGoogle Scholar
  12. 12.
    Hennig J, Mueri M, Friedburg H, Brunner P (1987) MR imaging of flow using the steady state selective saturation method. J. Comp. Assist. Tomogr. 11: 872CrossRefGoogle Scholar
  13. 13.
    Pike GB, Hu BS, Glover GH, Enzmann DR (1992) Magnetization transfer contrast enhanced time-of-flight angiography. Proc. XIth Ann. Meeting SMRM, Berlin, p. 218.Google Scholar
  14. 14.
    Hennig J, Mueri M, Brunner P, Friedburg H (1988) Quantitative flow measurement with the fast Fourier flow technique. Radiology 166: 237–240.PubMedGoogle Scholar
  15. 15.
    Laub G, Kaiser W (1988) MR angiography with gradient motion refocusing. J. Comput. Assist. Tomogr. 12: 377.PubMedCrossRefGoogle Scholar
  16. 16.
    Masaryk TJ, Modic MT, Ruggieri PM et al. (1989) Three-dimensional (volume) gradient-echo imaging of the carotid bifurcation: preliminary clinical experience. Radiology 171: 793.PubMedGoogle Scholar
  17. 17.
    Ruggieri PM, Laub G, Masryk TJ et al. (1989) Intracranial circulation: pulse sequence considerations in three-dimensional (volume) MR angiography. Radiology 171: 785.PubMedGoogle Scholar
  18. 18.
    Purdy D, Cadena G, Laub G (1992) The design of variable tip angle slab selection (TONE) pulses for improved 3-D MR angiography. Proc. XIth Ann. Meeting SMRM, Berlin, p. 882.Google Scholar
  19. 19.
    Macovsky A (1982) Selective projection imaging: applications to radiology and NMR. IEEE Trans. Med. Imaging 1: 42.CrossRefGoogle Scholar
  20. 20.
    Moran PR (1982) A flow velocity zeugmatographic interlace for NMR imaging in humans (1982). Magn. Reson. Imaging 1: 197.PubMedCrossRefGoogle Scholar
  21. 21.
    Dumoulin CL, Hart HR (1986) MR angiography. Proc. Vth Ann. Meeting SMRM, Montreal, p. 1095.Google Scholar
  22. 22.
    Dumoulin CL, Hart HR (1986) Magnetic resonance angiography. Radiology 161: 717.PubMedGoogle Scholar
  23. 23.
    Alfidi RJ, Masaryk TJ, Haacke EM et al. (1987) MR angiography of peripheral, carotid and coronary arteries. AJR 149: 1097.PubMedGoogle Scholar
  24. 24.
    Axel L, Morton D (1986) A method for imaging blood vessels by phase compensated/uncompensated difference images. Magn. Reson. Imaging 4: 153.CrossRefGoogle Scholar
  25. 25.
    Mattle HP, Wentz KU (1992) Selective magnetic resonance angiography of the head. Cardiovasc. Intervent. Radiol. 15: 65–70.PubMedGoogle Scholar
  26. 26.
    Evans AJ, Blinder RA, Herfkens RJ et al. (1988) Effects of turbulence on signal intensity in gradient echo images. Invest. Radiol. 23: 512.PubMedCrossRefGoogle Scholar
  27. 27.
    Podolak MJ, Hedlund LW, Evans AJ et al. (1989) Evaluation of flow through simulated vascular stenoses with gradient echo magnetic resonance imaging. Invest Radiol. 24: 184.PubMedCrossRefGoogle Scholar
  28. 28.
    Pattany PM, Marino R, McNally JM (1986) Velocity and acceleration desensitization in 2DFT MR imaging. Magn. Reson. Imaging 4: 154.CrossRefGoogle Scholar
  29. 29.
    Masaryk TJ, Modic MT, Ross JS (1989) Three dimensional (volume) gradient-echo imaging of the carotid bifurcation: preliminary clinical experience. Radiology 171: 801.PubMedGoogle Scholar
  30. 30.
    Ross KS, Masaryk TJ, Modic MT et al. (1990) Intracranial aneurysms: evaluation by MR angiography. Am. J. Neuroadiol 11: 449.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • J. Hennig
  • K. U. Wentz

There are no affiliations available

Personalised recommendations