Experimental Supports to a Sixteen-Strands Model of Transmembrane Arrangement of Mitochondrial Porin and Preliminary Results Concerning a Multigene Family in Drosophila melanogaster Related to Human Mitochondrial Porin

  • Vito De Pinto
  • Ruggiero Caizzi
  • Jalal Ahmad Aljamal
  • Corrado Caggese
  • Ferdinando Palmieri
Conference paper
Part of the NATO ASI Series book series (volume 83)


Mitochondrial porin or VDAC (voltage-dependent anion channel) is the intracellular aqueous pore which allows the very high permeability of the outer mitochondrial membrane (Colombini, 1979). It was shown to be present in every tissue investigated and in many organisms with approximately the same functional features, the same molecular size and a similar quantitative expression (De Pinto et al, 1987). The primary structure of porins from various sources has been determined. A great deal of interest is nowadays focussed in the structural arrangement of the polypeptide chain(s) of porin and its/their role in the properties of the channel. In the first part of this paper we give further experimental supports to a sixteen-stranded beta-barrel model of the transmembrane topology of the mammalian mitochondrial porin we have previously published (De Pinto et al, 1991b). The results reported here concern with the localization of the hydrophobic region responsible for the DCCD-binding and the characterization of porin cysteines with respect to their position in the channel unit. At the end our model and other models for mitochondrial porin appeared in the literature are discussed and compared to the bacterial porin structures determined by crystal analysis.


Outer Mitochondrial Membrane Genomic Fragment Transmembrane Topology OmpF Porin Mitochondrial Porin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blachly-Dyson, E., Peng, S., Colombini, M. and Forte, M. (1990) Science, 247, 1233–1236PubMedCrossRefGoogle Scholar
  2. Blachly-Dyson, E., Zambronicz, E.B., YU, W.H., Adams, V., McCabe, E.R.B., Adelman, J., Colombini, M. and Forte, M. (1992) in NATO ARW on “Molecular Biology of Mitochondrial Transport Systems” Abstract Book, p. 39Google Scholar
  3. Colombini, M. (1979) Nature 279, 643–645PubMedCrossRefGoogle Scholar
  4. Cowan, S.W., Schirmer, T., Rummel, G., Steiert, M., Ghosh, R., Pauptit, R.A., Jansonius, J.N. and Rosenbusch, J.P. (1992) Nature 358, 727–733PubMedCrossRefGoogle Scholar
  5. De Pinto, V., Ludwig, O., Krause, J. Benz, R. and Palmieri, F. (1987) Biochim. Biophys. Acta 894, 109–119PubMedCrossRefGoogle Scholar
  6. De Pinto, V., Aljamal, J.A., Benz, R., Genchi, G. and Palmieri, F. (1991a) Eur. J. Biochem. 202, 903–911PubMedCrossRefGoogle Scholar
  7. De Pinto, V., Prezioso, G., Thinnes, F., Link, T.A. and Palmieri, F. (1991b) Biochemistry, 30, 10191–10200PubMedCrossRefGoogle Scholar
  8. De Pinto, V., Aljamal, J.A. and Palmieri, F. (1993) J. Biol. Chem., in pressGoogle Scholar
  9. Fiermonte, G., Runswick, M.J., Walker, J.E. and Palmieri, F. (1992) DNA Sequence 3, 71–78PubMedGoogle Scholar
  10. Flavell, A.J., Dyson, J. and Ish-Horowicz, D. (1987) Nuc. Ac. Res. 15, Campunzano, S. and Modolell, J. (1992) T. Genet. 8, 202–208CrossRefGoogle Scholar
  11. Gelb, B.D., Adams, V., Jones, S.N., Griffin, L.D., MacGregor, G.R. and McCabe E.R.B. (1992) Proc. Natl. Acad. Sci. USA 89, 202–206PubMedCrossRefGoogle Scholar
  12. Haynes, S.R., Rebbert, M.L., Mozer, B.A., Forquignon, F. and Dawid, I.B. (1987) Proc. Natl. Acad. Sci. USA 84, 1819–1823PubMedCrossRefGoogle Scholar
  13. Kayser, H., Kratzin, H.D., Thinnes, F.P., Götz, H., Schmidt, W.E., Eckart, K. and Hilschmann, N. (1989) Hoppe-Seyler 370, 1265–1278Google Scholar
  14. Kleene, R., Pfanner, N., Pfaller, R., Link, T.A., Sebald, W. Neupert, W. and Tropschung, M. (1987) EMBO J. 6, 2627–2633PubMedGoogle Scholar
  15. Mannella, CA., Guo, X.-W. and Cognon, C. (1989) FEBS Lett. 253, 231–234CrossRefGoogle Scholar
  16. Mannella, CA. (1992) Trend Biochem. Sci. 17, 315–320PubMedCrossRefGoogle Scholar
  17. McEnery, M.W. (1992) J. Bioenerg. Biomembranes 24, 63–69CrossRefGoogle Scholar
  18. Nakashima, R.A., Mangan, P.S., Colombini, M. and Pedersen, P.L. (1986) Biochemistry 25, 1015–1021PubMedCrossRefGoogle Scholar
  19. Schiltz, E., Kreusch, A., Nestel, U. and Schulz, G.E. (1991) Eur. J. Biochem. 199, 587–59420.PubMedCrossRefGoogle Scholar
  20. Haynes, S.R., Rebbert, M.L., Mozer, B.A., Forquignon, F. and Dawid, I.B. (1987) Proc. Natl. Acad. Sci. USA 84, 1819–1823PubMedCrossRefGoogle Scholar
  21. Thinnes, F. (1992) J. Bioenerg. Biomembranes 24, 63–69CrossRefGoogle Scholar
  22. Thomas, L., Kocsis, E., Colombini, M., Erbe, E., Trus, B.L. and Steven, A.C. (1991) J. Struct. Biol. 106, 161–171PubMedCrossRefGoogle Scholar
  23. Weiss, M.S., Kreusch, A., Schiltz, E., Nestel, U., Weite, W. Weckesser, J. and Schulz, G.E. (1991) FEBS Lett. 280, 379–382PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Vito De Pinto
    • 1
  • Ruggiero Caizzi
    • 2
  • Jalal Ahmad Aljamal
    • 1
  • Corrado Caggese
    • 2
  • Ferdinando Palmieri
    • 1
  1. 1.Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular BiologyUniversity of BariBariItaly
  2. 2.Institute of GeneticsUniversity of BariBariItaly

Personalised recommendations