Purification and Patch Clamp Analysis of Two Mitochondrial Channels

  • Joyce J. Diwan
  • German Costa
Conference paper
Part of the NATO ASI Series book series (volume 83)

Abstract

Patch clamping has revealed the presence in mitochondrial membranes of several channel types, of conductance ranging from 6 pS to 1.3 nS in the presence of 150 mM KC1 or NaCl. A voltage-gated channel of about 107 pS conductance has been found in patches of mitoplasts and artificial membranes incorporating mitochondrial membrane fragments or fractions (Sorgato et al., 1987 & 1989; Kinnally et al. 1989; Moran et al., 1990; Klitsch & Siemen, 1991; Inoue et al, 1991). An ATP-sensitive K+ channel of 10 pS conductance in the presence of 100 mM KCl has been seen in patches of mitochondrial inner membrane (Inoue et al., 1991). A 1.3 nS mega-channel, which is opened by mM levels of Ca++ and blocked by cyclosporin A (Petronilli et al., 1989; Szabó & Zoratti, 1991 & 1992), appears to mediate the permeability transition associated with Ca++ loading (Broekemeier et al., 1989). An apparently equivalent multiconductance channel (MCC) exhibiting transitions ranging from 30 pS to 5 nS is found to be activated by Ca++ or high voltage (Kinnally et al., 1991, 1992; Antonenko et al., 1991; Zorov et al., 1992). A water-soluble 60 kDa protein extracted from mitochondria in ethanol was earlier reported to induce variable conductance increments in black lipid membranes (Mironova, 1981).

Keywords

Permeability Glycerol EDTA Sedimentation Electrophoresis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonenko, Y. N., Kinnally, K. W., Perini, S., and Tedeschi, H. (1991) “Selective effect of inhibitors on inner mitochondrial membrane channels,” FEBS Lett. 285, 89–93.PubMedCrossRefGoogle Scholar
  2. Bowen, K. A., Tam. K., & Colombini, M.(1985) “Evidence for titratable gating charges controlling the voltage dependence of the outer mitochondrial membrane channel, VDAC,” J. Membr. Biol. 86, 51–59.PubMedCrossRefGoogle Scholar
  3. Brierley, G. P. (1983) “Monovalent cation transport by heart mitochondria,” in: Pathobiology of Cell Membranes (Trump, B. and Arstila, A.V. eds) vol. III, pp. 23–61, Academic Press, New York.Google Scholar
  4. Brierley, G. P., Jurkowitz, M., and Jung, D. W. (1978) Osmotic swelling of heart mitochondria in acetate and chloride salts. Arch. Biochem. Biophys. 190: 181–192.PubMedCrossRefGoogle Scholar
  5. Broekemeier, K. M., Dempsey, M. E., and Pfeiffer, D. R. (1989) “Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria,” J. Biol. Chem. 264, 7826–7830.PubMedGoogle Scholar
  6. Chich, J.F., Goldschmidt, D., Thieffry, M. & Henry, J.P. (1991) “A peptide-sensitive channel of large conductance is localized on mitochondrial outer membrane,” Eur. J. Biochem. 196, 29–35.PubMedCrossRefGoogle Scholar
  7. Colombini, M. (1989) “Voltage gating in the mitochondrial channel, VDAC,” J. Membr. Biol. 111, 103–111.PubMedCrossRefGoogle Scholar
  8. Costa, G., Kinnally, K. W., and Diwan, J. J. (1991) “Patch clamp analysis of a partially purified ion channel from rat liver mitochondria,” Biochem. Biophys. Res. Comm. 175, 305–310.PubMedCrossRefGoogle Scholar
  9. Criado, M., and Keller, B. U. (1987) “A membrane fusion strategy for single-channel recordings of membranes usually non-accessible to patch-clamp pipette electrodes,” FEBS Lett. 224, 172–176.PubMedCrossRefGoogle Scholar
  10. Diwan, J. J., Haley, T., and Sanadi, D. R. (1988) “Reconstitution of transmembrane K+ transport with a 53 kilodalton mitochondrial protein,” Biochem. Biophys. Res. Comm. 153, 224–230.PubMedCrossRefGoogle Scholar
  11. Diwan, J. J., Moore, C, Haley, T., Herbrandson, H., & Sanadi, D. R. (1987) “Interaction of quinine with mitochondrial K+ transport mechanisms,” In: Advances in Membrane Biochemistry and Bioenergetics (C. H. Kim, H. Tedeschi, J. J. Diwan, & J. C. Salerno, eds) pp. 401–408, Plenum, NY.Google Scholar
  12. Diwan, J. J., Paliwal, R., Kaftan, E., and Bawa, R (1990) “A mitochondrial protein fraction catalyzing transport of the K+ analog Tl+” FEBS Lett. 273, 215–218.PubMedCrossRefGoogle Scholar
  13. Fèvre, F., Chich, J.-F., Lauquin, G. J. M., Henry, J.-P., & Thieffry, M. (1990) “Comparison of mitochondrial cationic channels in wild-type and porin-deficient mutant yeast,” FEBS Lett. 262, 201–204.PubMedCrossRefGoogle Scholar
  14. Hille, B. (1992) Ionic Channels of Excitable Membranes, 2nd Edition, Sinauer, Sunderland, MA.Google Scholar
  15. Inoue, I., Nagase, H., Kishi, K., and Higuti, T. (1991) “ATP-sensitive K+ channel in the mitochondrial inner membrane,” Nature 352, 244–247.PubMedCrossRefGoogle Scholar
  16. Kagawa, Y., and Racker, E. (1971) “Partial resolution of the enzymes catalyzing oxidative phosphorylation,” J. Biol. Chem. 246, 5477–5487.Google Scholar
  17. Kinnally, K. W., Antonenko, Y. N., and Zorov, D. (1992) “Modulation of inner mitochondrial membrane channel activity,” J. Bioenerget. Biomembr. 24, 99–110.CrossRefGoogle Scholar
  18. Kinnally, K. W., Campo, M. L., and Tedeschi, H. (1989) “Mitochondrial channel activity studied by patch-clamping mitoplasts,” J. Bioenerget. Biomembr. 21, 497–506.CrossRefGoogle Scholar
  19. Kinnally, K. W., Zorov, D., Antonenko, Y., and Perini, S. (1991) “Calcium modulation of mitochondrial inner membrane channel activity,” Biochem. Biophys. Res. Comm. 176, 1183–1188.PubMedCrossRefGoogle Scholar
  20. Klitsch, T., and Siemen, D. (1991) “Inner mitochondrial membrane anion channel is present in brown adipocytes but is not identical with the uncoupling protein,” J. Membr. Biol. 122, 69–75.PubMedCrossRefGoogle Scholar
  21. Laemmli, U. K. (1970) “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature 227, 680–685.PubMedCrossRefGoogle Scholar
  22. Mironova, G. D., Fedotcheva, N. L, Makarov, P. R., Pronevich, L. A., and Mironov, G. P. (1981) “Protein from beef heart mitochondria inducing the channel potassium conductivity of bilayer lipid membranes,” Biofizica 26, 458–465.Google Scholar
  23. Moran, O., Sandri, G., Panfili, E., Stühmer, W., and Sorgato, M. C. (1990) “Electrophysiological characterization of contact sites in brain mitochondria,” J. Biol. Chem. 265, 908–913.PubMedGoogle Scholar
  24. Moran, O., Sciancalepore, M., Sandri, G., Panfili, E., Bassi, R., Ballarin, C., and Sorgato, M. C. (1992) “Ionic permeability of the mitochondrial outer membrane,” Eur. Biophys. J. 20, 311–319.PubMedCrossRefGoogle Scholar
  25. Neher, E. (1992) “Ion channels for communication between and within cells,” Science 256, 498–502. (Nobel Lecture)PubMedCrossRefGoogle Scholar
  26. O’Farrell, P. H. (1975) “High resolution two-dimensional electrophoresis of proteins,” J. Biol. Chem. 250, 4007–4021.PubMedGoogle Scholar
  27. Paliwal, R., Costa, G., and Diwan, J. J. (1992) “Purification and patch clamp analysis of a 40-pS channel from rat liver mitochondria”, Biochemistry 31, 2223–2229.PubMedCrossRefGoogle Scholar
  28. Pedersen, P. L., Greenawalt, J. W., Reynafarje, B., Hullihen, J., Decker, G. L., Soper, J. W. and Bustamente, E. (1978) “Preparation and characterization of mitochondria and submitochondrial particles of rat liver and liver-derived tissues,” Methods in Cell Biology 20, 411–481.PubMedCrossRefGoogle Scholar
  29. Petronilli, V., Szabò, I., and Zoratti, M. (1989) “The inner mitochondrial membrane contains ion-conducting channels similar to those found in bacteria,” FEBS Lett. 259, 137–143.PubMedCrossRefGoogle Scholar
  30. Sakmann, B. (1992) “Elementary steps in synaptic transmission revealed by currents through single ion channels,” Science 256 503–512. (Nobel Lecture)PubMedCrossRefGoogle Scholar
  31. Sorgato, M. C., Keller, B. U., and Stühmer, W. (1987) “Patch-clamping of the inner mitochondrial membrane reveals a voltage-dependent ion channel,” Nature 330, 498–500.PubMedCrossRefGoogle Scholar
  32. Sorgato, M.C., Moran, O., DePinto, V., Keller, B. U., & Stuehmer, W. (1989) “Further investigation on the high-conductance ion channel of the inner membrane of mitochondria,” J. Bioenerget. Biomembr. 21, 485–496.CrossRefGoogle Scholar
  33. Szabó, I., and Zoratti, M. (1991) “The giant channel of the inner mitochondrial membrane is inhibited by cyclosporin A,” J. Biol. Chem. 266, 3376–3379.PubMedGoogle Scholar
  34. Szabó, I. and Zoratti, M. (1992) “The mitochondrial megachannel is the permeability transition pore,” J. Bioenerget. Biomembr. 24, 111–117.CrossRefGoogle Scholar
  35. Thieffry, M., Chich, J.-F., Goldschmidt, D., and Henry, J.-P. (1988) “Incorporation in lipid bilayers of a large conductance cationic channel from mitochondrial membranes,” EMBO J. 7, 1449–1454.PubMedGoogle Scholar
  36. Wunder, U. R. and Colombini, M. (1991) “Patch clamping VDAC in liposomes containing whole mitochondrial membranes,” J. Membr. Biol. 123, 83–91.PubMedCrossRefGoogle Scholar
  37. Zorov, D. B., Kinnally, K. W. and Tedeschi, H. (1992) “Voltage activation of the heart inner mitochondrial membrane channels,” J. Bioenerget. Biomembr. 24, 119–124.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Joyce J. Diwan
    • 1
  • German Costa
    • 1
  1. 1.Biology Department and Center for BiophysicsRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations