Skip to main content

Eicosanoids and Smooth Muscle Function

  • Chapter
Pharmacology of Smooth Muscle

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 111))

Abstract

In 1934, Goldblatt and von Euler independently described the effects of seminal fluid on smooth muscle tone. Since the prostata, was held to be the source, von Euler (1935) introduced the term “prostaglandin” to classify this new group of hitherto unknown acidic lipids. The description of these effects of prostaglandin(s) on smooth muscle tone marked the beginning of more than 50 years to date of intensive research on prostaglandins, thromboxanes, leukotrienes, and other members of this family of lipid mediators, now summarized under the more general term “eicosanoids.” All eicosanoids are enzymatic oxygenation products from polyunsaturated fatty acids with a 20-carbon backbone and a characteristic steric configuration. Figure 1 gives an overview of the major pathways of eicosanoid generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Latif AA, Zhang Y, Yousufzai SY (1991) Endothelin-1 stimulates the release of arachidonic acid and prostaglandins in rabbit iris sphincter smooth muscle: activation of phospholipase A2. Curr Eye Res 10:259–265

    PubMed  CAS  Google Scholar 

  • Abraham BG, Pinto A, Mullane KM, Levere RD, Spokas RG (1985) Presence of cytochrome P-450-dependent monooxygenase in intimai cells of the hog aorta. Hypertension 7:899–904

    PubMed  CAS  Google Scholar 

  • Ager A, Gordon JL, Moncada S, Pearson JD, Salmon J, Trevethick MA (1982) Effect of isolation and culture on prostaglandin synthesis by porcine aortic endothelial and smooth muscle cells. J Cell Physiol 110:9–16

    PubMed  CAS  Google Scholar 

  • Akhtar RA, Abdel-Latif AA (1980) Requirement for calcium ions in acetylcholine- stimulated phosphodiesteratic cleavage of phosphatidyl-myoinositol 4,5-biphosphate in rabbit iris smooth muscle. Biochem J 192:783–791

    PubMed  CAS  Google Scholar 

  • Arner M, Hoegestaett ED, Uski TK (1991) Characterization of contraction- mediating prostanoid receptors in human hand veins: effects of the thromboxane receptor antagonists BM 13,505 and AH 23848. Acta Physiol Scand 141:79–86

    PubMed  CAS  Google Scholar 

  • Barnette MS, Grous M (1992) Characterization of the antigen-induced contraction of colonic smooth muscle from sensitized guinea pigs. Am J Physiol 262: G144–G149

    PubMed  CAS  Google Scholar 

  • Bennett A, Eley G, Scholes GB (1968) Effects of prostaglandins E1 and E2 on human, guinea-pig and rat isolated small intestine. Br J Pharmacol 34:630–638

    PubMed  CAS  Google Scholar 

  • Bennett PR, Murdoch G, Elder MD, Myatt L (1987) The effects of lipoxygenase metabolites of arachidonic acid on human myometrial contractility. Prostaglandins 33:837–844

    PubMed  CAS  Google Scholar 

  • Berthiaume F, Frangos JA (1992) Flow-induced prostacyclin production is mediated by a pertussis toxin-sensitive G-protein. FEBS Lett 308:277–279

    PubMed  CAS  Google Scholar 

  • Braun M, Schrör K (1992) Prostaglandin D2 relaxes bovine coronary arteries by endothelium-dependent nitric oxide-mediated cGMP formation. Circ Res 71:1305–1313

    PubMed  CAS  Google Scholar 

  • Breuiller M, Doualla-Bell F, Litime MH, Leroy MJ, Ferre F (1991) Disappearance of human myometrial adenylate cyclase activation by prostaglandins at the end of pregnancy. Comparison with beta-adrenergic response. Adv Prostaglandin Thromboxane Leukotriene Res 21B:811–814

    CAS  Google Scholar 

  • Brinkman HJ, van Buul-Wortelboer MF, van Mourik JA (1991) Selective conversion and esterification of monohydroxyeicosatetraenoic acids by human vascular smooth muscle cells: relevance to smooth muscle cell proliferation. Exp Cell Res 192:87–92

    PubMed  CAS  Google Scholar 

  • Bunce KT, Clayton NM, Coleman RA, Collington EW, Finch H, Humphray JM, Humphrey PP, Reeves JJ, Sheldrick RL, Stables R (1991) GR63799X — a novel prostanoid with selectivity for EP3 receptors. Adv Prostaglandin Thromboxane Leukotriene Res 21A:379–382

    CAS  Google Scholar 

  • Burka JF (1988) Role of eicosanoids in airway smooth muscle tone. Prog Clin Biol Res 263:35–46

    PubMed  CAS  Google Scholar 

  • Campbell JH, Campbell GR (1986) Endothelial cell influences on vascular smooth muscle phenotype. Annu Rev Physiol 48:295–306

    PubMed  CAS  Google Scholar 

  • Carroll MA, Garcia MP, Falck JR, McGiff JC (1990) 5,6-Epoxyeicosatrienoic acid, a novel arachidonate metabolite: mechanism of vasoactivity in the rat. Circ Res 67:1082–1088

    PubMed  CAS  Google Scholar 

  • Chakraborti S, Michael JR, Patra SK (1991) Protein kinase C dependent and independent activation of phospholipase A2 under calcium ionophore (A23187) exposure in rabbit pulmonary arterial smooth muscle cells. FEBS Lett 285: 104–107

    PubMed  CAS  Google Scholar 

  • Coceani F, Hamilton NC, Labuc J, Olley PM (1984) Cytochrome P-450-linked monooxygenase: involvement in the lamb ductus arteriosus. Am J Physiol 246:H640–H643

    PubMed  CAS  Google Scholar 

  • Coleman RA, Kennedy I, Sheldrick PLG (1987) Evidence for the existence of three subtypes of PGE2 sensitive (EP) receptors in smooth muscle. Br J Pharmacol 91:323P

    Google Scholar 

  • Dahlén SE (1989) Pharmacological activities of lipoxins and related compounds. Adv Prostaglandin Thromboxane Leukotriene Res 19:122–127

    Google Scholar 

  • Danthuluri NR, Deth RC (1984) Phorbol ester induced contraction of arterial smooth muscle and inhibition on α-adrenergic response. Biochem Biophys Res Commun 125:1103–1109

    PubMed  CAS  Google Scholar 

  • Dembinska-Kiec A, Rücker W, Schönhöfer PS (1980) Effects of PGI2 and PGI2 analogues on cAMP levels in cultured smooth muscle cells derived from bovine arteries. Naunyn Schmiedebergs Arch Pharmacol 311:67–70

    PubMed  CAS  Google Scholar 

  • De Mey JG, Vanhoutte PM (1982) Heterogenous behaviour of the canine arterial and venous wall. Importance of the endothelium. Circ Res 51:439–447

    PubMed  Google Scholar 

  • DeWitt DL, Day JS, Sonnenburg WK, Smith WL (1983) Concentrations of prostaglandin endoperoxide synthase and prostaglandin I2 synthase in the endothelium and smooth muscle of bovine aorta. J Clin Invest 72:1882–1888

    PubMed  CAS  Google Scholar 

  • Dorn GW II (1991) Tissue- and species-specific differences in ligand binding to thromboxane A2 receptors. Am J Physiol 261:R145–R153

    PubMed  CAS  Google Scholar 

  • Dorn GW II, Becker MW (1992) Growth factors downregulate vascular smooth muscle thromboxane receptors independent of cell growth. Am J Physiol 262:C927–C933

    PubMed  CAS  Google Scholar 

  • Dorn GW II, Sens D, Chaikhouini D, Halushka PV (1987) Cultured human vascular smooth muscle cells with functional thromboxane A2 receptors: measurement of U 46619-induced 45Ca efflux. Circ Res 60:952–956

    PubMed  CAS  Google Scholar 

  • Dorn GW II, Becker MW, Davis MG (1992) Dissociation of the contractile and hypertrophic effects of vasoconstrictor prostanoids in vascular smooth muscle. J Biol Chem 267:24897–24905

    PubMed  CAS  Google Scholar 

  • Drazen JM, Austen KF (1987) Leukotrienes and airway responses. Am Rev Resp Dis 136:985–998

    PubMed  CAS  Google Scholar 

  • Douglas JS, Brink C (1987) Airway smooth muscle and disease workshop: histamine and prostanoids. Am Rev Respir Dis 136:S21–S24

    PubMed  CAS  Google Scholar 

  • Dusting GJ, Moncada S, Vane JR (1977) Prostacyclin (PGI2) is a weak contractor of coronary arteries of the pig. Eur J Pharmacol 45:301–304

    PubMed  CAS  Google Scholar 

  • Ek B, Humble L (1991) Correlation between oxidation of low density lipoproteins and prostacyclin synthesis in cultured smooth muscle cells. Biochem Pharmacol 41:695–699

    PubMed  CAS  Google Scholar 

  • Ellis EF, Oelz O, Roberts II LJ, Payne NA, Sweetman BJ, Nies AS, Oates JA (1976) Coronary arterial smooth muscle contraction by a substance released from platelets: evidence that it is thromboxane A2. Science 193:1135–1137

    PubMed  CAS  Google Scholar 

  • Escalante B, Sessa WC, Falck JR, Yadagiri P, Schwartzman ML (1990) Cytochrome P-450-dependent arachidonic acid metabolites, 19- and 20- hydroxyeicosatetraenoic acids, enhance sodium-potassium ATPase activity in vascular smooth muscle. J Cardiovasc Pharmacol 16:438–443

    PubMed  CAS  Google Scholar 

  • Fann JI, Sokoloff MH, Sarris GE, Yun KL, Kosek JC, Miller DC (1990) The reversibility of canine vein-graft arterialization. Circulation 82 Suppl 5: IV9–IV18

    PubMed  CAS  Google Scholar 

  • Farmer SG, Ensor JE, Burch RM (1991) Evidence that cultured airway smooth muscle cells contain bradykinin B2 and B3 receptors. Am J Respir Cell Mol Biol 4:273–277

    PubMed  CAS  Google Scholar 

  • Feinmark SJ, Cannon JP (1986) Endothelial cell leukotriene C4 synthesis results from intercellular transfer of leukotriene A4 synthesized by polymorphonuclear leukocytes. J Biol Chem 261:16466–16472

    PubMed  CAS  Google Scholar 

  • Ferguson MK, Tzeng E (1991) Attenuation of histamine-induced lymphatic smooth muscle contractility by arachidonic acid. J Surg Res 51:500–505

    PubMed  CAS  Google Scholar 

  • Fernandes LB, Goldie RG (1991) Antigen-induced release of airway epithelium-derived inhibitory factor. Am Rev Respir Dis 143:567–571

    PubMed  CAS  Google Scholar 

  • Filep JG, Battistini B, Sirois P (1991) Pharmacological modulation of endothelin-induced contraction of guinea-pig isolated airways and thromboxane release. Br J Pharmacol 103:1633–1640

    PubMed  CAS  Google Scholar 

  • Fleisch JH, Rinkema LE, Baker SR (1982) Evidence for multiple leukotriene D4 receptors in smooth muscle. Life Sci 31:577–581

    PubMed  CAS  Google Scholar 

  • Folts JD, Crowell ED, Rowe GG (1976) Platelet aggregation in partially obstructed vessels and its elimination with aspirin. Circulation 54:365–370

    PubMed  CAS  Google Scholar 

  • Frantzides CT, Frantzides EAL, Wittmann D, Greenwood B, Edmiston CE (1992) Prostaglandins and modulation of small bowel myoelectric activity. Am J Physiol 262:G488–G497

    PubMed  CAS  Google Scholar 

  • Fukuo K, Morimoto S, Koh E, Yukawa S, Tsuchiya H, Imanaka S, Yamamoto H, Onishi T, Kumahara Y (1986) Effects of prostaglandins on the cytosolic free calcium concentration in vascular smooth muscle cells. Biochem Biophys Res Commun 136:247–252

    PubMed  CAS  Google Scholar 

  • Furci L, Fitzgerald DJ, FitzGerald GA (1991) Heterogeneity of prostaglandin H2/ thromboxane A2 receptors: distinct subtypes mediate vascular smooth muscle contraction and platelet aggregation. J Pharmacol Exp Ther 258:74–81

    PubMed  CAS  Google Scholar 

  • Garcia JL, Monge L, Gomez B, Dieguez G (1991) Response of canine cerebral arteries to endothelin-1. J Pharm Pharmacol 43:281–284

    PubMed  CAS  Google Scholar 

  • Gerrard JM (ed) (1985) Prostaglandins and leukotrienes. Blood and vascular cell function. Dekker, New York

    Google Scholar 

  • Gerritsen ME, Cheli CD (1983) Arachidonic acid metabolism and prostaglandin endoperoxide metabolism in isolated rabbit coronary microvessels and isolated and cultivated coronary microvessel endothelial cells. J Clin Invest 72: 1658–1671

    PubMed  CAS  Google Scholar 

  • Gerritsen ME, Printz MP (1981) Sites of prostaglandin synthesis in the bovine heart and isolated bovine coronary microvessels. Circ Res 49:1152–1163

    PubMed  CAS  Google Scholar 

  • Gerzer R, Brash AR, Hardman JG (1986) Activation of soluble guanylate cyclase by arachidonic acid and 15-lipoxygenase products. Biochim Biophys Acta 886: 383–389

    PubMed  CAS  Google Scholar 

  • Giles H, Leff P (1988) The biology and pharmacology of PGD2. Prostaglandins 35:277–300

    PubMed  CAS  Google Scholar 

  • Glass DB, Frey W II, Carr DW, Goldberg ND (1977) Stimulation of platelet guanylate cyclase by fatty acids. J Biol Chem 252:1279–1285

    PubMed  CAS  Google Scholar 

  • Goldie RG, Fernandes LB, Rigby PJ, Paterson JW (1988) Epithelial dysfunction and airway hyperreactivity in asthma. Prog Clin Biol Res 263:317–329

    PubMed  CAS  Google Scholar 

  • Gotoh M, Hassouna M, Elhilali MM (1986) The mode of action of prostaglandin E2, F and prostacyclin on vesicourethral smooth muscle. J Urol 135:431–437

    PubMed  CAS  Google Scholar 

  • Goureau O, Tanfin Z, Harbon S (1990) Prostaglandins and muscarinic agonists induce cyclic AMP attenuation by two distinct mechanisms in the pregnant-rat myometrium. Interaction between cyclic AMP and Ca2+ signals. Biochem J 271:667–673

    PubMed  CAS  Google Scholar 

  • Grunstein MM, Chuang ST, Schramm CM, Pawlowski NA (1991a) Role of endothelin 1 in regulating rabbit airway contractility. Am J Physiol 260:L75–L82

    PubMed  CAS  Google Scholar 

  • Grunstein MM, Rosenberg SM, Schramm CM, Pawlowski NA (1991b) Mechanisms of action of endothelin 1 in maturing rabbit airway smooth muscle. Am J Physiol 260:L434–L443

    PubMed  CAS  Google Scholar 

  • Gu M, Elliott DA, Ong BY, Bose D (1991) Possible role of leukotrienes in hypoxic contraction of canine isolated basilar artery. Br J Pharmacol 103:1629–1632

    PubMed  CAS  Google Scholar 

  • Halushka PV, Morinelli TA, Mais DE (1990) Radioligand binding assays for thromboxane A2/prostaglandin H2 receptors. Methods Enzymol 187:397–405

    PubMed  CAS  Google Scholar 

  • Hanasaki K, Arita H (1989) A common binding site for primary prostanoids in vascular smooth muscle: a definite discrimination of the binding for thromboxane A2/prostaglandin H2 receptor agonist from its antagonist. Biochim Biophys Acts 1013:28–35

    CAS  Google Scholar 

  • Hanasaki K, Nakano T, Ksai H, Arita H, Ohtani K, Doteuchi M (1988) Specific receptors from thromboxane A2 in cultured vascular smooth muscle cells of rat aorta. Biochem Biophys Res Commun 150:1170–1175

    PubMed  CAS  Google Scholar 

  • Hanasaki K, Kishi M, Arita H (1990a) Phorbol ester-induced expression of the common, low-affinity binding site for primary prostanoids in vascular smooth muscle cells. J Biol Chem 265:4871–4875

    PubMed  CAS  Google Scholar 

  • Hanasaki K, Nakano T, Arita H (1990b) Receptor-mediated mitogenic effect of thromboxane A2 in vascular smooth muscle cells. Biochem Pharmacol 40: 2535–2542

    PubMed  CAS  Google Scholar 

  • Hardy CC, Robinson C, Tattersfield AE, Holgate ST (1984) The bronchoconstrictor effect of inhaled prostaglandin D2 in normal and asthmatic men. N Engl J Med 311:209–213

    PubMed  CAS  Google Scholar 

  • Hassid A (1986) Increase of cyclic AMP concentrations in cultured vascular smooth muscle cells by vasoactive peptide hormones. Role of endogenous prostaglandins. J Pharmacol Exp Ther 239:334–339

    PubMed  CAS  Google Scholar 

  • Hasunuma K, Terano T, Tamura Y, Yoshida S (1991) Formation of epoxyeico-satrienoic acids from arachidonic acid by cultured rat aortic smooth muscle cell microsomes. Prostaglandins Leukot Essent Fatty Acids 42:171–175

    PubMed  CAS  Google Scholar 

  • Hechtman DH, Kroll MH, Gimbrone MA Jr, Schafer AI (1991) Platelet interaction with vascular smooth muscle in synthesis of prostacyclin. Am J Physiol 260: H1544–H1551

    PubMed  CAS  Google Scholar 

  • Hedqvist P (1977) Basic mechanisms of prostaglandin action on autonomic neurotransmission. Annu Rev Pharmacol Toxicol 17:259–279

    PubMed  CAS  Google Scholar 

  • Himpens B, Kitazawa T, Somlyo AP (1990) Agonist-dependent modulation of Ca2+ sensitivity in rabbit pulmonary artery smooth muscle. Pflugers Arch 417:21–28

    PubMed  CAS  Google Scholar 

  • Hirata M, Hayashi Y, Ushikubi F, Yokota Y, Kageyama R, Nakanishi S, Narumiya S (1991) Cloning and expression of cDNA for a human thromboxane A2 receptor. Nature 349:617–619

    PubMed  CAS  Google Scholar 

  • Horsburgh K, Jansen I, Edvinsson L, McCulloch J (1990) Second messenger systems: functional role in cerebrovascular smooth muscle regulation. Eur J Pharmacol 191:205–211

    PubMed  CAS  Google Scholar 

  • Huwiler A, Fabbro D, Pfeilschifter J (1991) Possible regulatory functions by protein kinase C-α and -ε isoenzyme in rat renal mesangial cells. Biochem J 279:441–445

    PubMed  CAS  Google Scholar 

  • Ito S, Hashimoto H, Negishi M, Suzuki M, Koyano H, Noyori R, Ichikawa A (1992) Identification of the prostacyclin receptor by use of [15-3H1]19-(3-azidophenyl)20-norisocarbacyclin, an irreversible specific photoaffinity probe. J Biol Chem 267:20326–20330

    PubMed  CAS  Google Scholar 

  • Jaiswal N, Diz DI, Tallant EA, Khosla MC, Ferrario CM (1991) The nonpeptide angiotensin II antagonist DuP 753 is a potent stimulus for prostacyclin synthesis. Am J Hypertens 4:228–233

    PubMed  CAS  Google Scholar 

  • Janssen LJ, Daniel EE (1991) Pre- and postjunctional effects of a thromboxane mimetic in canine bronchi. Am J Physiol 261:L271–L276

    PubMed  CAS  Google Scholar 

  • Jaschonek K, Muller CP (1988) Platelet and vessel associated prostacyclin and thromboxane A2/prostaglandin endoperoxide receptors. Eur J Clin Invest 18: 1–8

    PubMed  CAS  Google Scholar 

  • Jeremy JY, Dandona P (1989) Effect of endothelium removal on inhibitory modulation of rat aortic prostacyclin synthesis. Br J Pharmacol 96:243–250

    PubMed  CAS  Google Scholar 

  • Jeremy JY, Mikhailidis DP, Dandona P (1985) The thromboxane A2 analogue U46619 stimulates vascular prostacyclin synthesis. Eur J Pharmacol 107:259–262

    PubMed  CAS  Google Scholar 

  • Jeremy JY, Mikhailidis DP, Dandona P (1988) Excitatory receptor-prostanoid synthesis coupling in smooth muscle: mediation by calcium, protein kinase C and G proteins. Prostaglandins Leukot Essent Fatty Acids 34:215–227

    PubMed  CAS  Google Scholar 

  • Johnson GJ, Dunlop PC, Leis LA, From AHL (1988) Dihydropyridine agonist Bay K 8644 inhibits platelet activation by competitive antagonism of thromboxane A2-prostaglandin H2 receptor. Circ Res 62:494–505

    PubMed  CAS  Google Scholar 

  • Keen M, Kelly E, MacDermot J (1989) Prostaglandin receptors in the cardiovascular system: potential selectivity from receptor subtypes or modified responsiveness. Eicosanoids 2:193–197

    PubMed  CAS  Google Scholar 

  • Keith RA, Salama AI (1987) Individual variations of prostanoid agonist responses in rabbit aorta. Evidence for the independent regulation of prostanoid receptor subtypes. Br J Pharmacol 92:133–148

    PubMed  CAS  Google Scholar 

  • Kennedy I, Coleman RA, Humphrey PPA, Levy GP, Lumley P (1982) Studies on the characterisation of prostanoid receptors: a proposed classification. Prostaglandins 24:667–689

    PubMed  CAS  Google Scholar 

  • Kirber MT, Ordway RW, Clapp LH, Walsh JV Jr, Singer JJ (1992) Both membrane stretch and fatty acids directly activate large conductance CA(2+)-activated K+ channels in vascular smooth muscle cells. FEBS Lett 297:24–28

    PubMed  CAS  Google Scholar 

  • Kujubu DA, Fletcher BS, Varnum BC, Lim RW, Herschman HR (1991) TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. J Biol Chem 266: 12866–12872

    PubMed  CAS  Google Scholar 

  • Kurihara H, Nakano T, Takasu N, Arita H (1991) Intracellular localization of group II phospholipase A2 in rat vascular smooth muscle cells and its possible relationship to eicosanoid formation. Biochim Biophys Acta 1082:285–292

    PubMed  CAS  Google Scholar 

  • Laneuville O, Corey EJ, Couture R, Pace-Asciak CR (1991) Hepoxilin A3 (HxA3) is formed by the rat aorta and is metabolized into HxA3-C, a glutathione conjugate. Biochim Biophys Acta 1084:60–68

    PubMed  CAS  Google Scholar 

  • Lang U, Vallotton MB (1989) Effects of angiotensin II and of phorbol ester on protein kinase C activation and on prostaglandin production in cultured rat aortic smooth muscle cells. Biochem J 259:477–483

    PubMed  CAS  Google Scholar 

  • Lefer AM, Smith EF III, Araki H, Smith JB, Aharony D, Claremon D, Magolda RL, Nicolaou KC (1980) Dissociation of vasoconstrictor and platelet aggregatory activities of thromboxane by carbocyclic thromboxane A2, a stable analog of thromboxane A2. Proc Natl Acad Sci USA 77:1706–1710

    PubMed  CAS  Google Scholar 

  • Leff P, Giles H (1992) Classification of platelet and vascular prostaglandin D2 (DP) receptors: estimation of affinities and relative efficacies for a series of novel bicylic ligands. With an appendix on goodness-of-fit analyses. Br J Pharmacol 106:996–1003

    PubMed  CAS  Google Scholar 

  • Legan E, Chernow B, Parrillo J, Roth BL (1985) Activation of phosphatidylinositol turnover in rat aorta by alpha1-adrenergic receptor stimulation. Eur J Pharmacol 110:389–390

    PubMed  CAS  Google Scholar 

  • Lei ZM, Rao CV (1992) The expression of 15-lipoxygenase gene and the presence of functional enzyme in cytoplasm and nuclei of pregnancy human myometria. Endocrinology 130:861–870

    PubMed  CAS  Google Scholar 

  • Lerner RW, Lopaschuk GD, Olley PM (1990) High-affinity prostaglandin E receptors attenuate adenylyl cyclase activity in isolated bovine myometrial membrane. Can J Physiol Pharmacol 68:1574–1580

    PubMed  CAS  Google Scholar 

  • Lin L-L, Lin AY, Knopf JL (1992) Cytosolic phospholipase A2 is coupled to hormonally regulated release of arachidonic acid. Proc Natl Acad Sci USA 89:6147–6151

    PubMed  CAS  Google Scholar 

  • Liu ECK, Hedberg A, Goldenberg HJ, Harris DN, Webb ML (1992) DUP 753, the selective angiotensin II blocker, is a competitive antagonist to human platelet thromboxane A2/prostaglandin H2 (TP) receptor. Prostaglandins 44: 89–99

    PubMed  CAS  Google Scholar 

  • Lopez Bernal A, Buckley S, Rees CM, Marshall JM (1991) Meclofenamate inhibits prostaglandin E binding and adenylyl cyclase activation in human myometrium. J Endocrinol 129:439–445

    PubMed  CAS  Google Scholar 

  • Lumley P, White BP, Humphrey PPA (1989) GR 32191, a highly potent and specific thromboxane A2 receptor blocking drug on platelets and vascular and airway smooth muscle. Br J Pharmacol 97:783–794

    PubMed  CAS  Google Scholar 

  • Main IHM (1964) The inhibitory actions of prostaglandins on respiratory smooth muscle. Br J Pharmacol 22:511–519

    CAS  Google Scholar 

  • Mais DE, Sauss DL Jr, Chaikhouni A, Kochel PJ, Knapp DR, Hamanaka N, Halushka PV (1985) Pharmacologic characterization of human and canine thromboxane A2/prostaglandin H2 receptors in platelets and blood vessels, evidence for different receptors. J Pharmacol Exp Ther 233:418–424

    PubMed  CAS  Google Scholar 

  • Marceau F, deBlois D, Laplante C, Petitclerc E, Pelletier G, Grose JH, Hugli TE (1990) Contractile effect of the chemotactic factors f-Met-Leu-Phe and C5a on the human isolated umbilical artery. Role of cyclooxygenase products and tissue macrophages. Circ Res 67:1059–1070

    PubMed  CAS  Google Scholar 

  • Marcus AJ, Weksler BB, Jaffe EA, Broekman MJ (1980) Synthesis of prostacyclin from platelet-derived endoperoxides by cultured human endothelial cells. J Clin Invest 66:979–986

    PubMed  CAS  Google Scholar 

  • Masferrer JL, Seibert K, Zweifel B, Needleman P (1992) Endogenous glucocorticoids regulate an inducible cyclooxygenase enzyme. Proc Natl Acad Sci USA 89: 3917–3921

    PubMed  CAS  Google Scholar 

  • Masuda A, Mais DE, Oatis JE, Halushka PV (1991a) Platelet and vascular thromboxane A2/prostaglandin H2 receptors. Evidence for different subclasses in the rat. Biochem Pharmacol 42:537–544

    PubMed  CAS  Google Scholar 

  • Masuda A, Mathur R, Halushka PV (1991b) Testosterone increases thromboxane A2 receptors in cultured rat aortic smooth muscle cells. Circ Res 69:638–643

    PubMed  CAS  Google Scholar 

  • McGiff JC (1991) Cytochrome P-450 metabolism of arachidonic acid. Annu Rev Pharmacol Toxicol 31:339–369

    PubMed  CAS  Google Scholar 

  • McKenniff MG, Norman P, Cuthbert NJ, Gardiner PJ (1991) Bay u3405, a potent and selective thromboxane A2 receptor antagonist on airway smooth muscle in vitro. Br J Pharmacol 104:585–590

    PubMed  CAS  Google Scholar 

  • Miki I, Nonaka H, Ishii A (1992) Characterization of thromboxane A2/prostaglandin H2 receptors and histamine H1 receptors in cultured guinea-pig tracheal smooth muscle cells. Biochim Biophys Acta 1137:107–115

    PubMed  CAS  Google Scholar 

  • Mokhtari A, Do Khac L, Tanfin Z, Harbon S (1985) Forskolin modulates cyclic AMP generation in the rat myometrium. Interactions with isoproterenol and prostaglandins E2 and I2. J Cyclic Nucleotide Protein Phosphor Res 10:213–227

    PubMed  CAS  Google Scholar 

  • Molnar M, Hertelendy F (1990) Regulation of intracellular free calcium in human myometrial cells by prostaglandin F: comparison with oxytocin. J Clin Endocrinol Metab 71:1243–1250

    PubMed  CAS  Google Scholar 

  • Moncada S (1992) The L-arginine : nitric oxide pathway. (The 1991 Ulf von Euler Lecture). Acta Physiol Scand 145:201–227

    PubMed  CAS  Google Scholar 

  • Morimoto S, Koh E, Kim E, Morita R, Fukuo K, Ogihara T (1990) Effects of prostaglandin F on the mobilization of cytosolic free calcium in vascular smooth muscle cells and on the tension of aortic strips from rats. Am J Hypertens 3:241S–244S

    PubMed  CAS  Google Scholar 

  • Morinelli TA, Oatis JE Jr, Okwu AK, Mais DE, Mayeux PR, Matsuda A, Knapp DR, Halushka PV (1989) Characterization of an 125I-labeled thromboxane A2/prostaglandin H2 receptor agonist. J Pharmacol Exp Ther 251:557–462

    PubMed  CAS  Google Scholar 

  • Morinelli TA, Meier KE, Zhang L-M, Newman WE (1992) Thromboxane A2/ prostaglandin H2 (TXA2/PGH2) stimulated mitogenesis of guinea pig vascular smooth muscle cells (SMC) is associated with activation of MAP-kinase and S6 kinase (Abstr). 8th International Conference on Prostaglandins and Related Compounds, Montreal

    Google Scholar 

  • Mugridge KG, Perretti M, Becherucci C, Parente L (1991) Persistent effects of interleukin-1 on smooth muscle preparations from adrenalectomized rats: implications for increased phospholipase-A2 activity via stimulation of 5-lipoxygenase. J Pharmacol Exp Ther 256:29–37

    PubMed  CAS  Google Scholar 

  • Nakahata T, Suzuki T (1981) Effects of prostaglandin E1, I2 and isoproterenol on the tissue cyclic AMP content in longitudinal muscle of rabbit intestine. Prostaglandins 22:159–165

    PubMed  CAS  Google Scholar 

  • Nakajima M, Ueda M (1990) Regional differences in the prostanoid receptors mediating prostaglandin F-induced contractions of cat isolated arteries. Eur J Pharmacol 191:359–368

    PubMed  CAS  Google Scholar 

  • Narumiya S, Toda N (1985) Different responsiveness of prostaglandin D2-sensitive systems to prostaglandin D2 and its analogues. Br J Pharmacol 85:367–375

    PubMed  Google Scholar 

  • Noll G, Buehler FR, Yang Z, Lüscher TF (1991) Different potency of endothelium- derived relaxing factors against thromboxane, endothelin, and potassium chloride in intramyocardial porcine coronary arteries. J Cardiovasc Pharmacol 18: 120–126

    PubMed  CAS  Google Scholar 

  • Norel X, Labat C, Gardiner PJ, Brink C (1991) Inhibitory effects of BAY u3405 on prostanoid-induced contractions in human isolated bronchial and pulmonary arterial muscle preparations. Br J Pharmacol 104:591–595

    PubMed  CAS  Google Scholar 

  • Nüsing R, Lesch R, Ullrich V (1990) Immunohistochemical localization of thromboxane synthase in human tissues. Eicosanoids 3:53–58

    PubMed  Google Scholar 

  • O’Donnell M, Crowley HJ, Yaremko B, O’Neill N, Welton AF (1991) Pharmacologic actions of Ro 24–5913, a novel antagonist of leukotriene D4. J Pharmacol Exp Ther 259:751–758

    PubMed  Google Scholar 

  • Ogletree ML, Allen GT (1992) Interspecies differences in thromboxane receptors: studies with thromboxane receptor antagonists in rat and guinea pig smooth muscles. J Pharmacol Exp Ther 260:789–793

    PubMed  CAS  Google Scholar 

  • Ogletree ML, Harris DN, Greenberg R, Haslanger MF, Nakane M (1985) Pharmacological actions of SQ 29,548, a novel selective thromboxane antagonist. J Pharmacol Exp Ther 234:435–441

    PubMed  CAS  Google Scholar 

  • Ordway RW, Walsh JV, Singer HH (1992) Arachidonic acid and other fatty acids directly activate potassium channels in smooth muscle cells. Science 244: 1176–1179

    Google Scholar 

  • Ozaki H, Ohyama T, Sato K, Karaki H (1990) Ca2+-dependent and independent mechanisms of sustained contraction in vascular smooth muscle of rat aorta. Jpn J Pharmacol 52:509–512

    PubMed  CAS  Google Scholar 

  • Pagano PJ, Lin L, Sessa WC, Nasjletti A (1991) Arachidonic acid elicits endothelium-dependent release from the rabbit aorta of a constrictor prostanoid resembling prostaglandin endoperoxides. Circ Res 69:396–405

    PubMed  CAS  Google Scholar 

  • Palmberg L, Lindgren JA, Thyberg J, Claesson HE (1991) On the mechanism of induction of DNA synthesis in cultured arterial smooth muscle cells by leuko-trienes. Possible role of prostaglandin endoperoxide synthase products and platelet-derived growth factor. J Cell Sci 98:141–149

    PubMed  CAS  Google Scholar 

  • Pfister SL, Falck JR, Campbell WB (1991) Enhanced synthesis of epoxyeicosatrienoic acids by cholesterol-fed rabbit aorta. Am J Physiol 261:H843–H852

    PubMed  CAS  Google Scholar 

  • Proctor KG, Capdevila JH, Falck JR, Fitzpatrick FA, Mullane KM, McGriff JC (1989) Cardiovascular and renal actions of cytochrome P-450 metabolites of arachidonic acid. Blood Vessels 26:53–64

    PubMed  CAS  Google Scholar 

  • Ramboer I, Blin P, Lacape G, Daret D, Lamaziere JM, Larrue J (1992) Effects of monohydroxylated fatty acids on arterial smooth muscle cell properties. Kidney Int Suppl 37:S67–S72

    PubMed  CAS  Google Scholar 

  • Rasmussen H, Forder J, Kojima I, Scriabine A (1984) TPA induced contraction of isolated rabbit vascular smooth muscle. Biochem Biophys Res Commun 122: 776–784

    PubMed  CAS  Google Scholar 

  • Ritter JM, Frazer CE, Taylor GW (1987) pH-dependent stimulation by calcium of prostacyclin synthesis in rat aortic rings: effects of drugs and inorganic ions. Br J Pharmacol 91:439–446

    PubMed  CAS  Google Scholar 

  • Roberts LJ II, Seibert K, Liston TE, Tantengoo MV, Robertson RM (1987) PGD2 is transformed by human coronary arteries to 9α,11β-PGF1, which contracts human coronary artery rings. Adv Prostaglandin Thromboxane Leukotriene Res 17:427–429

    Google Scholar 

  • Rücker W, Schrör K (1983) Evidence for high affinity prostacyclin binding sites in vascular tissue: radioligand studies with a chemically stable analog. Biochem Pharmacol 32:2405–2410

    PubMed  Google Scholar 

  • Sadoshima J-I, Akaike N, Kanaide H, Nakamura M (1988) Cyclic AMP modulates Ca-activated K channel in cultured smooth muscle cells of rat aortas. Am J Physiol 255:H754–H759

    PubMed  CAS  Google Scholar 

  • Salari H, Schellenberg RR (1991) Stimulation of human airway epithelial cells by platelet activating factor (PAF) and arachidonic acid produces 15-hydroxyeicosatetraenoic acid (15-HETE) capable of contracting bronchial smooth muscle. Pulm Pharmacol 4:1–7

    PubMed  CAS  Google Scholar 

  • Salmon J, Smith DR, Flower RJ, Moncada S, Vane JR (1978) Further studies on the enzymatic conversion of prostaglandin endoperoxide into prostacyclin by porcine aorta microsomes. Biochim Biophys Acta 523:250–262

    PubMed  CAS  Google Scholar 

  • Samuelsson B (1983) Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 220:568–575

    PubMed  CAS  Google Scholar 

  • Sasaki Y, Seto M, Komatsu K (1990) Diphosphorylation of myosin light chain in smooth muscle cells in culture. Possible involvement of protein kinase C. FEBS Lett 276:161–164

    PubMed  CAS  Google Scholar 

  • Satoh K, Yamada H, Taira N (1991) Differential antagonism by glibenclamide of the relaxant effects of cromakalim, pinacidil and nicorandil on canine large coronary arteries. Naunyn Schmiedebergs Arch Pharmacol 343:76–82

    PubMed  CAS  Google Scholar 

  • Schiemann WP, Doggwiler KO, Buxton IL (1991) Action of adenosine in estrogen-primed nonpregnant guinea pig myometrium: characterization of the smooth muscle receptor and coupling to phosphoinositide metabolism. J Pharmacol Exp Ther 258:429–437

    PubMed  CAS  Google Scholar 

  • Schröder H, Schrör K (1993) Prostaglandin-dependent cyclic AMP formation in endothelial cells. Naunyn Schmiededbergs Arch Pharmacol 347:101–104

    Google Scholar 

  • Schrör K (1992) Role of prostaglandins in the cardiovascular effects of bradykinin and angiotensin-converting enzyme inhibitors. J Cardiovasc Pharmacol 20 Suppl 9:S68–S73

    PubMed  Google Scholar 

  • Schrör K (1993) Prostaglandin-mediated actions of the renin-angiotensin systems. Arzneimittelforsch 43:236–241

    PubMed  Google Scholar 

  • Schrör K, Rösen P (1979) Prostacyclin (PGI2) decreases the cyclic AMP levels in coronary arteries. Naunyn Schmiedebergs Arch Pharmacol 306:101–103

    PubMed  Google Scholar 

  • Schrör K, Verheggen R (1986) Prostacyclins are only weak antagonists of coronary vasospasm indiced by authentic thromboxane A2 and serotonin. J Cardiovasc Pharmacol 8:607–613

    PubMed  Google Scholar 

  • Schrör K, Darius H, Matzky R, Ohlendorf R (1981) The antiplatelet and cardiovascular actions of a new carbacyclin derivative (ZK36374) — equipotent to PGI2 in vitro. Naunyn Schmiedebergs Arch Pharmacol 316:252–255

    PubMed  Google Scholar 

  • Schwaner I, Seifert R, Schultz G (1992) The prostacyclin analogues, cicaprost and iloprost, increase cytosolic CA2+-concentration in human erythroleukemia cell line, HEL, via pertussis toxin-insensitive G-proteins. Eicosanoids 5 (Suppl): 10–12

    Google Scholar 

  • Scornik FS, Toro L (1992) U46619, a thromboxane A2 agonist, inhibits KCa channel activity from pig coronary artery. Am J Physiol 262:C708–C713

    PubMed  CAS  Google Scholar 

  • Scott RB, Maric M (1991) A limited role for leukotrienes and platelet-activating factor in food protein induced jejunal smooth muscle contraction in sensitized rats. Can J Physiol Pharmacol 69:1841–1846

    PubMed  CAS  Google Scholar 

  • Seeger W, Grimminger F (1990) Die Rolle von Arachidonsäuremetaboliten in der Pathogenese des Asthma bronchiale. Verh Dtsch Ges Inn Med 96:685–693

    PubMed  CAS  Google Scholar 

  • Serruys PW, Rutsch W, Heyndrickx GR, Danchin N, Gijs Mast E, Mijns W, Rensing BJ, Vos J, Stibbe J (1991) Prevention of restenosis after percutaneous transluminal coronary angioplasty with thromboxane A2 receptor blockade. A randomized, double-bind placebo-controlled trial. Circulation 84:1568–1580

    PubMed  CAS  Google Scholar 

  • Sessa WC, Nasjletti A (1990) Dexamethasone selectively attenuates prostanoid-induced vasoconstrictor responses in vitro. Circ Res 66:383–388

    PubMed  CAS  Google Scholar 

  • Sessa WC, Halushka PV, Okwu A, Nasjletti A (1990) Characterization of the vascular thromboxane A2/prostaglandin endoperoxide receptor in rabbit aorta. Regulation by dexamethasone. Circ Res 67:1562–1569

    PubMed  CAS  Google Scholar 

  • Seto M, Sasaki Y, Hidaka H, Sasaki Y (1991) Effects of HA1077, a protein kinase inhibitor, on myosin phosphorylation and tension in smooth muscle. Eur J Pharmacol 195:267–272

    PubMed  CAS  Google Scholar 

  • Shikada K, Yamamoto A, Tanaka S (1991) NIP-121 and cromakalim, potassium channel openers, preferentially suppress prostanoid-induced contraction of the guinea-pig isolated trachea. Eur J Pharmacol 209:69–73

    PubMed  CAS  Google Scholar 

  • Shirotani M, Yui Y, Hattori R, Kawai C (1991) U-61,431F, a stable prostacyclin analogue, inhibits the proliferation of bovine vascular smooth muscle cells with little antiproliferative effect on endothelial cells. Prostaglandins 41:97–110

    PubMed  CAS  Google Scholar 

  • Siegel G, Stock G, Schnalke F, Litza B (1987) Electrical and mechanical effects of prostacyclin in the canine carotid artery. In: Gryglewski RJ, Stock G (eds) Prostacyclin and its stable analogue iloprost. Springer, Berlin Heidelberg New York, pp 143–149

    Google Scholar 

  • Siegel G, Carl A, Adler A, Stock G (1989) Effect of the prostacyclin analogue iloprost on K+ permeability in the smooth muscle cells of the canine carotid artery. Eicosanoids 2:213–222

    PubMed  CAS  Google Scholar 

  • Sinzinger H, Zidek T, Fitscha P, O’Grady J, Wagner O, Kaliman J (1987) Prostaglandin I2 reduces activation of human arterial smooth muscle cells in-vivo. Prostaglandins 33:915–918

    PubMed  CAS  Google Scholar 

  • Smith CD, Cox CC, Snyderman R (1986) Receptor coupled activation of phos-phoinositides specific phospholipase C by an N-protein. Science 232:97–100

    PubMed  CAS  Google Scholar 

  • Smith EF III, Lefer AM, Nicolaou KC (1981) Mechanism of coronary vasoconstriction induced by carbocyclic thromboxane A2. Am J Physiol 240:H493–H497

    PubMed  CAS  Google Scholar 

  • Smith EF III, Slivjak MJ, Eckardt RD, Newton JF (1989) Antagonism of leukotriene C4, leukotriene D4 and leukotriene E4 vasoconstrictor responses in the conscious rat with the peptidoleukotriene receptor antagonist SK&F 104353: evidence for leukotriene D4 receptor heterogeneity. J Pharmacol Exp Ther 249:805–811

    PubMed  CAS  Google Scholar 

  • Smith JB, Yanagisawa A, Ziplin R, Lefer AM (1987) Constriction of cat coronary arteries by synthetic thromboxane A2 and its antagonism. Prostaglandins 33: 777–782

    PubMed  CAS  Google Scholar 

  • Smith WL (1986) Prostaglandin biosynthesis and its compartmentation in vascular smooth muscle and endothelial cells. Annu Rev Physiol 48:251–262

    PubMed  CAS  Google Scholar 

  • Smith WL, DeWitt DL, Allan ML (1983) Bimodal distribution of the prostaglandin I2 antigen in smooth muscle cells. J Biol Chem 258:5922–2926

    PubMed  CAS  Google Scholar 

  • Smith WL, Marnett LJ, DeWitt DL (1991) Prostaglandin and thromboxane biosynthesis. Pharmacol Ther 49:153–179

    PubMed  CAS  Google Scholar 

  • Snyder DW, Fleisch JH (1989) Leukotriene receptor antagonists as potential therapeutic agents. Annu Rev Pharmacol Toxicol 29:123–143

    PubMed  CAS  Google Scholar 

  • Souhrada M, Souhrada JF (1991) Respiratory epithelium-dependent inhibition of protein kinase C of airway smooth muscle cells. J Appl Physiol 70:2137–2144

    PubMed  CAS  Google Scholar 

  • Spector AA, Gordon JA, Moore SA (1988) Hydroxyeicosatetraenoic acids (HETEs). Prog Lipid Res 27:271–323

    PubMed  CAS  Google Scholar 

  • Stewart D, Poutney E, Fitchett D (1984) Norepinephrine-stimulated vascular prostacyclin synthesis. Receptor-dependent calcium channels control prostaglandin synthesis. Can J Physiol Pharmacol 62:1341–1347

    PubMed  CAS  Google Scholar 

  • Suga EA, Roth BL (1987) Prostaglandins activate phosphoinositide metabolism in rat aorta. Eur J Pharmacol 136:325–332

    Google Scholar 

  • Sugimoto Y, Namba T, Honda A, Hayashi Y, Negishi M, Ichikawa A, Narumiya S (1992) Cloning and expression of a cDNA for mouse prostaglandin E receptor EP3 subtype. J Biol Chem 267:6463–6466

    PubMed  CAS  Google Scholar 

  • Svensson J, Hamberg M (1976) Thromboxane A2 and prostaglandin H2: potent stimulators of the swine coronary artery. Prostaglandins 12:943–950

    PubMed  CAS  Google Scholar 

  • Sylvester JT, McGowan C (1978) The effects of agents that bind to cytochrome P-450 on hypoxic pulmonar vasoconstriction. Circ Res 43:429–437

    PubMed  CAS  Google Scholar 

  • Takayanagi I, Kawano K, Koike K (1990) Evidence for release of prostaglandin F in contractile response of guinea pig trachea to norepinephrine. Jpn J Pharmacol 54:330–332

    PubMed  CAS  Google Scholar 

  • Takayasu-Okishio M, Terashita Z, Kondo K (1990) Endothelin-1 and platelet activating factor stimulate thromboxane A2 biosynthesis in rat vascular smooth muscle cells. Biochem Pharmacol 40:2713–27122

    PubMed  CAS  Google Scholar 

  • Takeuchi K, Abe K, Maeyama K, Sato M, Yasujima M, Watanabe T, Yoshinaga K (1991) Simultaneous measurements of cytosolic free calcium level and prostaglandin synthesis reveal a correlation between them in perfused monolayer of cultured rat vascular smooth muscle cells: effects of bradykinin and angiotensin II. Tohoku J Exp Med 165:183–192

    PubMed  CAS  Google Scholar 

  • Taylor DA, Bowman BF, Stull JT (1989) Cytoplasmic Ca2+ is a primary determinant for myosin phosphorylation in smooth muscle cells. J Biol Chem 264:6207–6213

    PubMed  CAS  Google Scholar 

  • Templeton AG, McGrath JC, Whittle MJ (1991) The role of endogenous thromboxane in contractions to U46619, oxygen, 5-HT and 5-CT in the human isolated umbilical artery. Br J Pharmacol 103:1079–1084

    PubMed  CAS  Google Scholar 

  • Tesfamariam B, Cohen RA (1992) Role of superoxide anion and endothelium in vasoconstrictor action of prostaglandin endoperoxide. Am J Physiol 262: H1915–H1919

    PubMed  CAS  Google Scholar 

  • Tessier GJ, Lackner PA, O’Grady SM, Kannan MS (1991) Modulation of equine tracheal smooth muscle contractility by epithelial-derived and cyclooxygenase metabolites. Respir Physiol 84:105–114

    PubMed  CAS  Google Scholar 

  • Toda N (1982) Different responses of a variety of isolated dog arteries to prostaglandin D2. Prostaglandins 23:99–112

    PubMed  CAS  Google Scholar 

  • Toda N, Matsumoto T, Yoshida K (1992) Comparison of hypoxia-induced contraction in human, monkey, and dog coronary arteries. Am J Physiol 262:H678–H683

    PubMed  CAS  Google Scholar 

  • Toro L, Vaca L, Stefani E (1991) Ca2+ activated K+ channels from coronary smooth muscle reconstituted in lipid bilayers. Am J Physiol 260:H1779–H1789

    PubMed  CAS  Google Scholar 

  • Towart R, Perzborn E (1981) Nimodipine inhibits carbocyclic thromboxane induced contraction of cerebral arteries. Eur J Pharmacol 69:213–215

    PubMed  CAS  Google Scholar 

  • Town M-H, Schillinger E, Speckenbach A, Prior G (1982) Identification and characterisation of a prostacyclin-like receptor in bovine coronary arteries using a specific and stable prostacyclin analogue, ciloprost, as radioactive ligand. Prostaglandins 24:61–72

    PubMed  CAS  Google Scholar 

  • Trachte GJ, Lefer AM, Aharony D, Smith JB (1979) Potent constriction of cat coronary arteries by hydroperoxides of arachidonic acid and its blockade by anti-inflammatory agents. Prostaglandins 18:909–914

    PubMed  CAS  Google Scholar 

  • Uchida Y, Murao S (1974) Cyclic changes in peripheral blood pressure of partially constricted coronary artery. Jpn Coll Angiol 14:383

    Google Scholar 

  • Uehara Y, Numabe A, Kawabata Y, Nagata T, Hirawa N, Ishimitsu T, Matsuoka H, Ikeda T, Sugimoto T (1991) Rapid smooth muscle cell growth and endogenous prostaglandin system in spontaneously hypertensive rats. Am J Hypertens 4:806–814

    PubMed  CAS  Google Scholar 

  • Vane JR (1969) The release and fate of vasoactive hormones in the circulation. (Second Gaddum Memorial Lecture). Br J Pharmacol 35:209–242

    PubMed  CAS  Google Scholar 

  • Vegesna RVK, Diamond J (1986) Elevation of cyclic AMP by prostacyclin is accompanied by relaxation of bovine coroanry arteries and contraction of rabbit aortic rings. Eur J Pharmacol 128:25–31

    PubMed  CAS  Google Scholar 

  • Verheggen R, Schrör K (1986) The modification of platelet-induced vasoconstriction by a thromboxane receptor antagonist. J Cardiovasc Pharmacol 8:483–490

    PubMed  CAS  Google Scholar 

  • Vesin MF, Khac LO, Harbon S (1979) Prostacyclin as endogenous modulator of adenosine 3´5´-monophosphate levels in rat endometrium and myometrium. Mol Pharmacol 15:823–840

    Google Scholar 

  • Voelkel NF, Chang SW, McDonnell TJ, Westcott JY, Haynes J (1987) Role of membrane lipids in the control of normal vascular tone. Am Rev Respir Dis 136:214–217

    PubMed  CAS  Google Scholar 

  • von Euler US (1935) Über die spezifische blutdrucksenkende Substanz des menschlichen Prostata- und Samenblasensekrets. Klin Wochenschr 14:1182–1185

    Google Scholar 

  • Walsh MP (1991) Calcium-dependent mechanisms of regulation of smooth muscle contraction. Biochem Cell Biol 69:771–780

    PubMed  CAS  Google Scholar 

  • Weiss JW, Drazen JM, Coles N, McFadden ER Jr, Weller PF, Corey EJ, Lewis RA, Austen KF (1982) Bronchoconstrictor effects of leukotriene C in humans’ Science 216:196–198

    PubMed  CAS  Google Scholar 

  • Wilkens AJ, MacDermot J (1987) The putative prostacyclin receptor antagonist (FCE-22176) is a full agonist on human platelets and NMCB-20 cells. Eur J Pharmacol 127:117–119

    Google Scholar 

  • Willis AL, Smith DL, Vigo C (1986) Suppression of principal atherosclerotic mechanisms by prostacyclin and other eicosanoids. Prog Lipid Res 25:645–666

    PubMed  CAS  Google Scholar 

  • Xie W, Chipman JG, Robertson DL, Erikson RL, Simmons DL (1991) Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc Natl Acad Sci USA 88:2692–2696

    PubMed  CAS  Google Scholar 

  • Yamada K, Kubo K, Shuto KI, Nakamizo N (1984) Inhibition of thromboxane A2 induced vasoconstriction by KF4939, a new anti-platelet agent, in rabbit mesenteric and dog coronary arteries. Jpn J Pharmacol 36:283–290

    PubMed  CAS  Google Scholar 

  • Yamamoto S (1992) Mammalian lipoxygenases: molecular structures and functions. Biochim Biophys Acta 1128:117–131

    PubMed  CAS  Google Scholar 

  • Yang SG, Saifeddine M, Chuang M, Severson DL, Hollenberg MD (1991) Diacylglycerol lipase and the contractile action of epidermal growth factor-urogastrone: evidence for distinct signal pathways in a single strip of gastric smooth muscle. Eur J Pharmacol 207:225–230

    PubMed  CAS  Google Scholar 

  • Yu XY, Hubbard W, Spannhake EW (1992) Inhibition of canine tracheal smooth muscle by mediators from cultured bronchial epithelial cells. Am J Physiol 262:L229–L234

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schrör, K., Schröder, H. (1994). Eicosanoids and Smooth Muscle Function. In: Szekeres, L., Papp, J.G. (eds) Pharmacology of Smooth Muscle. Handbook of Experimental Pharmacology, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78920-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78920-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78922-9

  • Online ISBN: 978-3-642-78920-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics