Skip to main content

Geochemistry of the Upper Jurassic Tuwaiq Mountain and Hanifa Formation Petroleum Source Rocks of Eastern Saudi Arabia

  • Chapter
Book cover Petroleum Source Rocks

Part of the book series: Casebooks in Earth Sciences ((CASEBOOKS))

Abstract

Thick, regionally extensive, laminated organic-rich lime mudstone units are present within the late Jurassic Hanifa and Tuwaiq Mountain Formations. These potential source rocks were deposited during the late Callovian to early Kimmeridgian within a relatively short-lived intra-shelf basin, the Arabian basin. This basin formed on the northeastern continental shelf of the Afro-Arabian plate, in what is now eastern Saudi Arabia, as a result of relative sea level rise in combination with differential subsidence and/or local structuring within the shelf. The Arabian basin was at least partially separated from the open neo-Tethys ocean by flanking paleo-highs composed of grainstone shoal/barrier island facies. The source rocks, defined as units having TOC > 1%, have an average TOC content of about 3%, with contents as high as 13%. Total pyrolytic yield (S1 + S2 from Rock-Eval) is as high as 88 mg HC/g rock, with an average yield of 25 mg HC/g rock, indicating excellent source rock potential. Hydrogen indices of thermally immature rocks are between 600 and 800 mg HC/g TOC, which indicates an oil-prone kerogen. The organic material is dominated by lamalginite, with subordinate amounts of vitrinite and inertinite, most of which is fluorescent. Kerogen from immature rocks isolated for elemental analysis plot as type II on a van Krevelen diagram. These results show that organic-rich units within the Hanifa and Tuwaiq Mountain Formations contain type II kerogen having excellent, oil-prone source rock potential.

Major oil accumulations occur in several late Jurassic carbonate reservoirs in Saudi Arabia. Representative oils from these reservoirs show very similar chromatographic and biomarker fingerprints to bitumen extracted from the Hanifa and Tuwaiq Mountain Formation source rocks, suggesting that the oils were derived from these source rocks. The similar stable carbon isotope ratios between the oils (avg. δ 13C = - 26.6‰) and the kerogen (avg. δ 13C = - 26.4‰) and bitumen (avg. δ 13C = - 27.1‰) is also consistent with an origin from the Hanifa and Tuwaiq Mountain Formations.

The thermal maturation history of the Hanifa and Tuwaiq Mountain source rocks was calculated using kinetic models. Results indicate that oil generation and expulsion began about 75 Ma B.P. in the eastern part of the basin. By 50 Ma B.P. the oil kitchens had expanded westward and oil had started filling the broad, gentle structures that had formed during the late Cretaceous. Today, the Hanifa and Tuwaiq Mountain source rocks east of the Ghawar structure have passed through the oil generation window. The source rocks in the basin center are still within the oil generation window. In the western part of the basin, the source rocks are either immature or just starting to enter the oil window.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-Ali MA, Franz UA, Shen V, Monnier F, Mahmoud MD, Chambers TM (1991) Hydrocarbon generation and migration in the paleozoic sequence of Saudia Arabia. SPE Prof Pap 21376, Proc 7th Ann SPE Middle East Oil Show, Bahrain, 345–355

    Google Scholar 

  • Ala MA, Kinghorn RRF, Rahman M (1980) Organic geochemistry and source-rock characterization of the Zagros petroleum province, SW Iran. J Petrol Geol 3: 61–89

    Article  Google Scholar 

  • Alsharhan AS, Kendall CGStC (1986) Precambrian to Jurassic rocks of Arabian Gulf and adjacent areas: their facies, depositional setting, and hydrocarbon habitat. Am Assoc Pet Geol Bull 70: 977–1002

    Google Scholar 

  • Ayres MG, Bilal M, Jones RW, Slentz LW, Tartir M, Wilson AO (1982) Hydrocarbon habitat in main producing areas, Saudi Arabia. Am Assoc Pet Geol Bull 66: 1–9

    Google Scholar 

  • Beydoun ZR, (1991) Arabian Plate hydrocarbon geology and potential — a plate tectonic approach. Am Assoc Pet Geol, Tulsa, Stud Geol 33: 76

    Google Scholar 

  • Clark JP, Philp RP (1989) Geochemical characterization of evaporite and carbonate depositional environments and correlation of associated crude oils in the Black Creek basin, Alberta, Bull Can Petrol Geol 37: 401–416

    Google Scholar 

  • Clayton CJ (1991a) Effect of maturity on carbon isotope ratios of oils and condensates. Org Geochem 17: 887–900

    Article  Google Scholar 

  • Clayton CJ (1991b) Carbon isotope fractionation during natural gas generation from kerogen. Mar Petrol Geol 8: 232–240

    Article  Google Scholar 

  • Cole GA, Carrigan WJ, Colling EL, Halpern HI, Al-Khadrawi MR, Jones PJ (1994) The organic geochemistry of the Jurassic petroleum system in Eastern Saudi Arabia. In: Beauchamp B, Embry AF, Glass D (eds). Carboniferous to Jurassic Pangea, Can Soc Petrol Geol, Calgary, Mem 17 (in press)

    Google Scholar 

  • Connan J, Dessort D (1987) Novel family of hexacyclic hopanoid alkanes (C32–C35) occurring in sediments and oils from anoxic paleoenvironments. Org Geochem 11: 103–113

    Article  Google Scholar 

  • Connan J, Bouroullec J, Dessort D, Albrecht P (1986) The microbial input in carbonate-anhydrite facies of a sabkha paleoenvironment from Guatemala: a molecular approach, Org Geochem 10: 29–50

    Article  Google Scholar 

  • Cook AC, Sherwood NR (1991) Classification of oil shales, coals and other organic-rich rocks. Org Geochem 17: 211–222

    Article  Google Scholar 

  • Dow WG, O’Connor DI (1982) Kerogen maturity and type by reflected light microscopy applied to petroleum exploration, In: How to assess maturation and paleotemperatures. Soc Econ Paleontol Mineral, Tulsa, Short Course Number 7, pp 133–158

    Google Scholar 

  • Droste H (1990) Depositional cycles and source rock development in an epeiric intra-platform basin: the Hanifa Formation of the Arabian peninsula. Sediment Geol 69: 281–296

    Article  Google Scholar 

  • Droste H (1993) Source rock development and relative sea-level changes in an intra-platform basin: the upper Jurassic Hanifa Formation of the Arabian Peninsula, Am Assoc Pet Geol Bull 77: 533.

    Google Scholar 

  • Huang WY, Meinschein WG (1979) Sterols as ecological indicators. Geochem Cosmochem Acta 43: 739–745

    Article  Google Scholar 

  • Katz BJ (1983) Limitations of Rock-Eval pyrolysis for typing organic matter. Org Geochem 4: 195–199

    Article  Google Scholar 

  • Langdon GS, Malecek SJ (1987) Seismic stratigraphic study of two Oxfordian carbonate sequences, Eastern Saudi Arabia. Am Assoc Pet Geol Bull 71: 403–418

    Google Scholar 

  • Langford FF, Blanc-Valleron MM (1990) Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon. Am Assoc Pet Geol Bull 74: 799–804

    Google Scholar 

  • Mahmoud MD, Vaslet D, Husseini MI (1992) The lower Silurian Qalibah Formation of Saudi Arabia: an important hydrocarbon source rock. Am Assoc Pet Geol Bull 76: 1491–1506

    Google Scholar 

  • McGillivray JG, Husseini MI (1992) The Paleozoic petroleum geology of Central Arabia. Am Assoc Pet Geol Bull 76: 1473–1490

    Google Scholar 

  • McGuire MD, Koepnick RB, Markello JR, Stockton ML, Waite LE, Kompanik GS, Al-Shammery MJ, Al-Amoudi MO (1993) Importance of sequence stratigraphic concepts in development of reservoir architecture in upper Jurassic grain-stones, Hadriya and Hanifa reservoirs, Saudi Arabia. SPE Prof Pap 25578, Proc 8th Ann SPE Middle East Oil Tech Conf & Exhibition, Manama, Bahrain, pp 489–499

    Google Scholar 

  • Mello MR, Telnaes N, Gaglianone PC, Chicarelli MI, Brassell SC, Maxwell JR (1988) Organic geochemical characterization of depositional paleoenvironments in Brazilian marginal basins, Org Geochem 13: 31–46

    Article  Google Scholar 

  • Moldowan JM, Seifert WK, Gallegos EJ (1985) Relationship between petroleum composition and depositional environment of petroleum source rocks. Am Assoc Pet Geol Bull 69: 1255–1268

    Google Scholar 

  • Murris RJ (1980) Middle East: stratigraphic evolution and oil habitat. Am Assoc Pet Geol Bull 64: 597–618

    Google Scholar 

  • Oil & Gas Journal (1992) Worldwide production report 90 (52): 39–85

    Google Scholar 

  • Pelet R (1983) A model for organic sedimentation on present-day continental margins. In: Brooks J, Fleet AJ (ed) Marine Petroleum Source Rocks, Geol Soc, London, Spec Publ 26:167–180

    Google Scholar 

  • Peters KE (1986) Guidelines for evaluating petroleum source rocks using programmed pyrolysis. Am Assoc Pet Geol Bull 70: 318–329

    Google Scholar 

  • Peters KE, Moldowan JM (1991) Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum, Org Geochem 17: 47–61

    Article  Google Scholar 

  • Peters KE, Moldowan JM (1993), The biomarker guide — interpreting molecular fossils in petroleum and ancient sediments. Prentice Hall, Englewood Cliffs, NY, 585 pp

    Google Scholar 

  • Powers RW, Ramirez LR, Redmond CD, Elberg EL (1966) Sedimentary geology of Saudi Arabia, In: Geology of the Arabian Peninsula. USGS Prof Pap 560-D, 150 pp

    Google Scholar 

  • Robert P (1988) Organic metamorphism and geothermal history: microscopic study of organic matter and thermal evolution of sedimentary basins. Elf-Acquitaine and Reidel, Boston, 311 pp

    Google Scholar 

  • Seifert WK, Moldowan JM (1978) Application of steranes, terpanes, and monoaromatics to the maturation and migration, and source of crude oils, Geochim Cosmochim Acta 42: 77–95

    Article  Google Scholar 

  • Steineke M, Bramkamp RA, Sander NJ (1958) Stratigraphie relations of Arabian Jurassic oil. In: Weeks LG (ed) Habitat of Oil, Am Assoc Pet Geol symp 40th ann meeting New York, March 28–30, 1955: 1294–1329

    Google Scholar 

  • Stoneley R (1990) The Middle East basin: a summary overview. In: Brooks J (ed) Classic petroleum provinces, Geol Soc, London, Spec Publ 50: 293–298

    Google Scholar 

  • Suess E (1980) Particulate organic flux in the oceans — surface productivity and oxygen utilization. Nature 288: 260–262

    Article  Google Scholar 

  • Summons RE, Walter MR (1990) Molecular fossils and micro-fossils of procaryotes and protists from Proterozoic sediments. Am J Sci 290-A: 212–244

    Google Scholar 

  • Tissot BP, Weite DH (1984) Petroleum formation and occurrence. Springer, Berlin Heidelberg New York, 699 pp

    Google Scholar 

  • Van Gijzel P (1982) Characterization and identification of kero-gen and bitumen and determination of thermal maturation by means of qualitative and quantitative microscopical techniques. In: How to assess maturation and paleotemperatures. Soc Econ Paleontol Mineral, Tulsa, Short Course Number 7, pp 159–216

    Google Scholar 

  • Volkman JK (1986) A review of sterol markers for marine and terrigenous organic matter. Org Geochem 9: 84–99

    Article  Google Scholar 

  • Waples DW, Machihara T (1991) Biomarkers for geologists -A practical guide to the application of steranes and triterpanes in petroleum geology. Am Assoc Pet Geol, Tulsa, Methods 9, 91 pp

    Google Scholar 

  • Waples DW, Kamata H, Suiza M (1992a) The art of maturity modeling. Part 1: Finding a satisfactory geologic model. Am Assoc Pet Geol Bull 76: 31–46

    Google Scholar 

  • Waples DW, Suiza M, Kamata H (1992b) The art of maturity modeling. Part 2: Alternative models and sensitivity analysis. Am Assoc Pet Geol Bull 76: 47–66

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carrigan, W.J., Cole, G.A., Colling, E.L., Jones, P.J. (1995). Geochemistry of the Upper Jurassic Tuwaiq Mountain and Hanifa Formation Petroleum Source Rocks of Eastern Saudi Arabia. In: Katz, B.J. (eds) Petroleum Source Rocks. Casebooks in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78911-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78911-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78913-7

  • Online ISBN: 978-3-642-78911-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics