Use of Roquinimex in the Myeloid Leukemias

  • J. M. Rowe
  • B. I. Nilsson
  • B. Simonsson
Conference paper
Part of the Haematology and Blood Transfusion / Hämatologie und Bluttransfusion book series (HAEMATOLOGY, volume 37)

Abstract

The increasing use of allogeneic bone marrow transplantation has led to unequivocal evidence for the efficacy of immunotherapy in the treatment of acute leukemia. It is now known that syngeneic transplantation, T lymphocyte depletion and the absence of graft-versus-host disease all increase the risk of relapse following allogeneic transplantation for the myeloid leukemias, both acute and chronic. Leukemia-specific immune responses appear to play a major role in the therapy of the myeloid leukemias. In recent years attempts have been made to better characterize and effectively utilize these antileukemic immune responses. A beneficial effect is more likely to be seen when the tumor burden is low and such efforts have therefore concentrated on clinical states of minimal residual disease. This review will discuss the role of the novel immunomodulator roquinimex following autologous bone marrow transplantation for myeloid leukemias, and will focus on recent experience and ongoing clinical trials in acute myelogenous leukemia and chronic myelogenous leukemia.

Keywords

Leukemia Sarcoma Interferon Pseudomonas Cyclosporine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gutterman JU, Hersh RM, Rodriguez V, McCredie KB, Mavligit G, Reed R, Burgess MA, Smith T, Gehan E, Bodey GP, Sr. Freireich EJ (1974) Chemoimmunotherapy of adult acute leukaemia. Lancet, 2, 1405–9PubMedCrossRefGoogle Scholar
  2. 2.
    Whiteside MG, Cauchi MN, Paton C, Stone J (1976) Chemoimmunotherapy for maintenance in acute myeloblastic leukemia. Cancer, 38, 1581–6PubMedCrossRefGoogle Scholar
  3. 3.
    Whittaker JA (1980) Immunotherapy in the treatment of acute leukaemia. British Journal of Haematology, 45, 187–93PubMedCrossRefGoogle Scholar
  4. 4.
    Galton DAG, Kay HE, Reizenstein P, Penchansky M, Vogler WR, Whittaker JA (1977) Infection and second-remission rates in patients having immunotherapy for acute myeloid leukemia. Lancet, 2, 973PubMedCrossRefGoogle Scholar
  5. 5.
    Bennett JM, Begg CB (1981) Eastern Cooperative Oncology Group study of the cytochemistry of adult acute myeloid leukemia by correlation of subtypes with response and survival. Cancer Research, 41, 4833–7PubMedGoogle Scholar
  6. 6.
    Ifrah N, James JM, Viguie JPM, Marie JP, Zittoun R (1985) Spontaneous remission in adult acute leukemia. Cancer, 56, 1187–90PubMedCrossRefGoogle Scholar
  7. 7.
    Enck RE (1985) Spontaneous complete remission in acute promyelocytc leukemia. New York State Journal of Medicine, 88, 662–3Google Scholar
  8. 8.
    Takaue Y, Culbert SJ, van Eys J, Dalton WT Jr, Cork A, Trujillo JM (1986) Spontaneous cure of end-stage nonlymphocytic leukemia complicated with chloroma (granulocytic sarcoma) Cancer, 58, 1101–5PubMedCrossRefGoogle Scholar
  9. 9.
    Jehn UW, Mempel MA (1986) Spontaneous remission of acute myeloid leukemia. Blut, 52, 165–8PubMedCrossRefGoogle Scholar
  10. 10.
    Passe S, Mike V, Mertelsmann R, Gee TS, Clarkson BD (1982) Acute nonlymphoblastic leukemia: prognostic factors in adults with long-term follow-up. Cancer, 50, 1462–71PubMedCrossRefGoogle Scholar
  11. 11.
    Weiden PL, Sullivan KM, Flournoy N, Storb R, Thomas ED (1981) Antileukemic effect of chronic graft-versus-host disease: contribution to improved survival after allogeneic marrow transplantation. New England Journal of Medicine, 304, 1529–33PubMedCrossRefGoogle Scholar
  12. 12.
    Sullivan KM, Fefer A, Witherspoon R (1987) Graft-versus-leukemia in man: Relationship with acute and chronic graft-versus-host disease to relapse of acute leukemia following allogeneic bone marrow transplantation in Cellular Immunotherapy of Cancer edited by RL Truitt, RP Gale and MM Bortin, pp. 391–399, New York: Alan R. Liss, IncGoogle Scholar
  13. 13.
    Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ, Rimm AA, Ringden O, Rozman C, Speck B (1990) Graft-versus-leukemia reactions after bone marrow transplantation. Blood, 75, 555–62PubMedGoogle Scholar
  14. 14.
    Weisdorf DJ, Nesbit ME, Ramsay NKC, Woods WG, Goldman AI, Kim TH, Hurd DD, McGlave PB, Kersey JH (1987) Allogeneic bone marrow transplantation for acute lymphoblastic leukemia in remission: prolonged survival associated with acute graft-versus-host disease. Journal of Clinical Oncology, 5, 1348–55PubMedGoogle Scholar
  15. 15.
    Butturini A, Bortin MM, Gale RP (1987) Graft-versus-leukemia following bone marrow transplantation. Bone Marrow Transplantation, 2, 233–42PubMedGoogle Scholar
  16. 16.
    Fefer A, Sullivan KM, Weiden P, Buckner CD, Schoch G, Storb R, Thomas ED (1987) Graft versus leukemia effect in man: the relapse rate of acute leukemia is lower after allogeneic than after syngeneic marrow transplantation. Progress in Clinical & Biological Research, 244, 401–8Google Scholar
  17. 17.
    Sullivan KM, Storb R, Buckner CD, Fefer A, Fisher L, Weiden PL, Witherspoon RP, Appelbaum FR, Banaji M, Hansen J et al. (1989) Graft-versus-host disease as adoptive immunotherapy in patients with advanced hematologic neoplasms. New England Journal of Medicine, 320, 828–34PubMedCrossRefGoogle Scholar
  18. 18.
    Goldman JM, Gale RP, Horowitz MM, Biggs JC, Champlin RE, Gluckman E, Hoffmann RG, Jacobsen SJ, Marmont AM, McGlave PB (1988) Bone marrow transplantation for chronic myelogenous leukemia in chronic phase. Increased risk for relapse associated with T-cell depletion. Annals of Internal Medicine, 108, 806–14PubMedGoogle Scholar
  19. 19.
    Butturini A, Gale RP (1987) The role of T-cells in preventing relapse in chronic myelogenous leukemia. Bone Marrow Transplantation, 2, 351–4PubMedGoogle Scholar
  20. 20.
    Odon LF, August CS, Githens JH, Humbert JR (1981) “Graft-versus-leukemia” reaction following bone marrow transplantation for acute lymphoblastic leukemia in Graft-versus-leukemia in man and animal models edited by O’Kunewick JT, Meredith RF, pp. 25–31, Boca Raton FL: CRCGoogle Scholar
  21. 21.
    Kolb HJ, Mittermuller J, Klemm C, Heller E, Ledderose G, Brehm G, Heim M, Wilmann SW (1990) Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplantations. Blood, 76, 2462–2465PubMedGoogle Scholar
  22. 22.
    Drobyski WR, Keever CA, Roth KS, Koethe S, Hanson G, McFadden P, Gottschall JL, Ash RC, vanTuinen T, Horowitz MM, Flomenberg N (1993) Salvage immunotherapy using donor leukocyte infusions as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation: Efficacy and Toxicity of a defined T-cell dose. Blood, 82, 2310–2318PubMedGoogle Scholar
  23. 23.
    Szer J, Grigg AP, Phillips GL, Sheridan WP (1993) Donor leucocyte infusions after chemotherapy for patients relapsing with acute leukemia following allogeneic bone marrow transplant. Bone Marrow Transplantation, 11, 109–111PubMedGoogle Scholar
  24. 24.
    Bar BM, Schattenberg A, Mensink EJ, Geurts van Kessel A, Smetsers TF, Knops EH, Linders EH, DeWite T (1993) Donor leukocyte infusions for chronic myeloid leukemia relapsed after allogeneic bone marrow transplantation. Journal of Clinical Oncology, 11 (3), 513–519Google Scholar
  25. 25.
    Antin JH. (1993) Graft-versus-leukemia: No longer an epiphenomenon. Blood, 82, 2273–2278PubMedGoogle Scholar
  26. 26.
    Cullis JO, Jiang YZ, Schwarer AP, Hughes TP, Barrett AJ, Goldman JM (1992) Donor leukocyte infusions for chronic myeloid leukemia in relapse after allogeneic bone marrow transplantation. Blood, 79, 1379–1381PubMedGoogle Scholar
  27. 27.
    Ash RC, Casper JT, Chitambar CR, Hansen R, Bunin N, Truitt RL (1990) Successful allogeneic transplantation of T-cell-depleted bone marrow from closely HLA-matched unrelated donors. New England Journal of Medicine, 322, 485–494PubMedCrossRefGoogle Scholar
  28. 28.
    Beatty PG, Hansen JA, Longton GM, Thomas ED, Sanders JE, Martin PJ (1991) Marrow transplantation from HLA-matched unrelated donors for treatment of hematologic malignancies. Transplantation, 51, 443–447PubMedCrossRefGoogle Scholar
  29. 29.
    Kernan NA, Bartsch G, Ash RC, Beatty PG, Champlin R, Pilipovich A (1993) Analysis of 462 transplantations from unrelated donors facilitated by the National Marrow Donor Program. New England Journal of Medicine, 328, 593–602PubMedCrossRefGoogle Scholar
  30. 30.
    Vinci G, Vernant JP, Nakazawa M, Zohair M, Katz A, Henri A, Rochant H, Breton-Gorius J, Vainchenker W (1988) In vitro inhibition of normal human hematopoiesis by marrow CD3+, CD8+, HLA-DR+, HNK1+ lymphocytes. Blood, 72, 1616–21PubMedGoogle Scholar
  31. 31.
    Vinci G, Vernant JP, Cordonnier C, Henri A, Breton-Gorius J, Rochant H, Vainchenker W (1987) In vitro inhibition of hematopoiesis by HNK1, DR-positive T cells and monocytes after allogeneic bone marrow transplantation. Experimental Hematology, 15, 54–64PubMedGoogle Scholar
  32. 32.
    Lotze MT, Grimm EA, Mazumder A, Strausser JL, Rosenberg SA (1981) Lysis of fresh and cultured autologous tumor by human lymphocytes cultured in T-cell growth factor. Cancer Research, 41, 4420–5PubMedGoogle Scholar
  33. 33.
    Lotzova E, Savary CA, Herberman RB (1987) Induction of NK cell activity against fresh human leukemia in culture with the interleukin 2. Journal of Immunology, 138, 2718–27Google Scholar
  34. 34.
    Reittie JE, Gottlieb D, Heslop HE, Leger O, Drexler HG, Hazelhurst G, Hoffbrand AV, Prentice HG, Brenner MK (1989) Endogenously generated activated killer cells circulate after autologous and allogeneic marrow transplantation but not after chemotherapy. Blood, 73, 1351–8PubMedGoogle Scholar
  35. 35.
    Hauch M, Azzola MV, Small T, Bordignon C, Barnett L, Cunningham I, Castro-Malaspinia H, O’Reilly RJ, Keever CA (1990) Anti-leukemia potential of interleukin-2 activator natural killer cells after bone marrow transplantation of chronic myelogenous leukemia. Blood, 75, 2250–2254PubMedGoogle Scholar
  36. 36.
    Jiang YZ, Cullis JO, Kanfer EJ, Goldman JM, Barrett AJ (1993) T-cell and NK cell mediated graft-versus-leukemia reactivity following donor buffy coat transfusion to treat relapse after marrow transplantation for chronic myeloid leukemia. Bone Marrow Transplantation, 11, 133–136PubMedGoogle Scholar
  37. 37.
    MacKinnon S, Hows JM, Goldman JM (1990) Induction of in vitro graft-versus-leukemia activity following bone marrow transplantation for chronic myeloid leukemia. Blood 76, 2037–2040PubMedGoogle Scholar
  38. 38.
    Simonsson B, Nilsson BI, Rowe JM (1992) Treatment of minimal residual disease in acute leukemia — focus on immunotherapeutic options. Leukemia, 6 (Suppl 4), 124–34PubMedGoogle Scholar
  39. 39.
    Pizzolo G, Trentin L, Vinante F, Agostini C, Zambello R, Masciarelli M, Feruglio C, Dazzi F, Todeschini G, Chilosi M, et al (1988) Natural killer cell function and lymphoid subpopulations in acute non-lymphoblastic leukaemia in complete remission. British Journal of Cancer, 58, 368–72PubMedCrossRefGoogle Scholar
  40. 40.
    Fefer A, Cheever M, Greenberg P (1982) Lymphocyte transfer as potential cancer immunotherapy, in Immunological Approaches to Cancer Therapeutics edited by Mihiche, pp. 299–332. New York: John Wiley and SonsGoogle Scholar
  41. 41.
    Fefer A, Cheever M, Greenberg P (1982) Overview of prospects and problems of lymphocyte transfer for cancer therapy, in Progress in Cancer Research and Therapy: The Potential Role of T-cells in Cancer Therapy, Vol 22 edited by Fefer A, Goldstein AL, pp. 126, New York: Raven PressGoogle Scholar
  42. 42.
    Rosenberg S, Packard B, Aebersold P (1988) Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma: A preliminary report. New England Journal of Medicine, 319, 1676–1680PubMedCrossRefGoogle Scholar
  43. 43.
    Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ, Rimm AA, Ringden O, Rozman C, Speck B (1990) Graft-versus-leukemia reactions after bone marrow transplantation. Blood, 75, 555–62PubMedGoogle Scholar
  44. 44.
    Barrett A, Jiang YZ (1992) Immune responses to chronic myeloid leukaemia. Bone Marrow Transplantation, 9, 305–11PubMedGoogle Scholar
  45. 45.
    Sosman JA, Oettel KR, Smith SD, Hank JA, Fisch P, Sondel PM (1990) Specific recognition of human leukemic cells by allogeneic T-cells: II. Evidence for HLA-D restricted determinants on leukemic cells that are crossreactive with determinants present on unrelated nonleukemic cells. Blood, 75, 2005–16PubMedGoogle Scholar
  46. 46.
    Falkenberg JHF, Goselink HM, Van der Harst D, Faber L, Fibbe WE, Willemze R, Brand A, Goulmy E (1990) Specific lysis of clonogenic leukemic cells (CLC) by cytotoxic T lymphocytes (CTL) against minor histocompatibility (MH) antigens: An in vitro model for graft vs leukemia (GVL). Experimental Hematology, 18, 682(abstract)Google Scholar
  47. 47.
    Jiang YZ, Kanfer E, Macdonald D, Cullis JO, Goldman JM, Barrett AJ (1991) Graft-versus-leukaemia effect following allogeneic bone marrow transplantation: emergence of cytotoxic T lymphocytes reacting to host leukaemia cells. Bone Marrow Transplantation, 8, 253–8PubMedGoogle Scholar
  48. 48.
    Champlin R, Ho W, Gajewski J, Feig S, Burnison M, Holley G, Greenberg P, Lee K, Schmid I, Giorgi J, Yam P, Petz L, Winston D, Warner N, Reichert T (1990) Selective depletion of CD8+ T lymphocytes for prevention of graft-versus-host disease after allogeneic bone marrow transplantation. Blood, 76, 418–422PubMedGoogle Scholar
  49. 49.
    Melzer MS, Nacy CA (1989) Delayed type hypersensitivity in the induction of activated, cytotoxic macrophages, in Fundamental Immunology edited by P. Wee, pp. 735–764. New York: Raven PressGoogle Scholar
  50. 50.
    Fidler IJ, Schroit AJ (1988) Recognition and destruction of neoplastic cells by activated macrophages: discrimination of altered self. Biochimica et Biophysica Acta, 948, 151–73PubMedGoogle Scholar
  51. 51.
    Drysdale BE, Agarwal S, Shin HS (1988) Macrophage-mediated tumoricidal activity: mechanisms of activation and cytotoxicity. Progress In Allergy, 40, 111–61PubMedGoogle Scholar
  52. 52.
    Wunderlich JR, Hodes RJ (1991) Principles of tumor immunity: Biology of cellular immune responses in Biologic Therapy of Cancer edited by V.T. DeVita, S. Hellman, and S.A. Rosenberg, pp. 3–21. Philadelphia: J.B. Lippincott CoGoogle Scholar
  53. 53.
    Kalland T (1990) Regulation of natural killer progenitors. Studies with a novel immunomodulator with distinct effects at the precursor level. Journal of Immunology, 144, 4472–6Google Scholar
  54. 54.
    Larsson EL, Joki A, Stalhandske T (1987) Mechanism of action of the immunomodulator LS 2616 on T cell responses. International Journal of Immunopharmacology, 9, 425–31PubMedCrossRefGoogle Scholar
  55. 55.
    Stalhandske T, Kalland T (1986) Effects of the novel immunomodulator LS 2616 on the delayed-type hypersensitivity reaction to Bordetella pertussis in the rat. Immunopharmacology, 11, 87–92PubMedCrossRefGoogle Scholar
  56. 56.
    Kalland T (1986) Effects of the immunomodulator LS 2616 on growth and metastasis of the murine B16-F10 melanoma. Cancer Research, 46, 3018–22PubMedGoogle Scholar
  57. 57.
    Kalland T, Alm G, Stalhandske T (1985) Augmentation of mouse natural killer cell activity by LS 2616, a new immunomodulator. Journal of Immunology, 134, 3956–61Google Scholar
  58. 58.
    Kalland T, Maksimova A, Stalhandske T (1985) Prophylaxis and treatment of experimental tumors with the immunomodulator LS 2616. International Journal of Immunopharmacology, 7, 390CrossRefGoogle Scholar
  59. 59.
    Stalhandske T, Jansson AH, Karlstrom R, Maksimova A, Wigow U, Kalland T (1985) Restoration of suppressed immune response with a new modulator quinoline-3-carboxamide (LS 2616) during experimental trypansoma infection. International Journal of Immunopharmacology, 7, 391CrossRefGoogle Scholar
  60. 60.
    Ilback NG, Fohlman J, Slorach S, Friman G (1989) Effects of the immunomodulator LS 2616 on lymphocyte subpopulations in murine Coxsackievirus B3 myocarditis. Journal of Immunology, 142, 3225–8Google Scholar
  61. 61.
    Bengtsson M, Simonsson B, Carlsson K, Nilsson B, Smedmyr B, Termander B, Oberg G, Totterman T (1992)Stimulation of NK cell, T cell, and monocyte functions by the novel immunomodulator Linomide after autologous bone marrow transplantation. A pilot study in patients with acute myeloid leukemia. Transplantation, 53, 882–8PubMedCrossRefGoogle Scholar
  62. 62.
    Nilsson BI, Simonsson B, Bengtsson M, Tötterman TH, Johansson C, Rowe JM (1993). Immunotherapy of AML after ABMT — Scientific rationale and early experiences with Linomide in Sixth International Symposium on Autologous Bone Marrow Transplantation, eds. Dicke KA, Keating A. Cancer Treatment Research Education Fund, Arlington TX, pp. 38–44, 1993Google Scholar
  63. 63.
    Tarkowski A, Gunnarsson K, Stalhandske T (1986) Effects of LS-2616 administration upon the autoimmune disease of (NZB × NZW) F1 hybrid mice. Immunology, 59, 689–94Google Scholar
  64. 64.
    Rowe JM, Nilsson BI, Simonsson B (1993) Treatment of minimal residual disease in myeloid leukemia — the immunotherapeutic options with emphasis on Linomide. Leukemia & Lymphoma, 11, 321–329CrossRefGoogle Scholar
  65. 65.
    Apperley JF, Jones L, Hale G, Waldmann H, Hows J, Rombos Y, Tsatalas C, Marcus RE, Goolden AW, Gordon-Smith EC, et al (1986) Bone marrow transplantation for patients with chronic myeloid leukaemia: T-cell depletion with Campath-1 reduces the incidence of graft-versus-host disease but may increase the risk of leukaemic relapse. Bone Marrow Transplantation, 1, 53–66PubMedGoogle Scholar
  66. 66.
    Rowe J, Ryan D, DiPersio J, Gaspari A, Nilsson B, Larsson L, Liesveld J, Kouides P, Simonsson B (1993) Autografting in chronic myelogenous leukemia followed by immunotherapy. Stem Cells, 11 (Suppl 3), 34–42PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • J. M. Rowe
    • 1
  • B. I. Nilsson
    • 2
    • 3
  • B. Simonsson
    • 4
  1. 1.Hematology UnitUniversity of Rochester Medical CenterRochesterUSA
  2. 2.Pharmacia OncologyColumbusUSA
  3. 3.Pharmacia OncologyHelsingborgSweden
  4. 4.Division of HematologyUniversity HospitalUppsalaSweden

Personalised recommendations