Surface Segregation and Wetting from Polymer Mixtures

  • Ullrich Steiner
  • Erika Eiser
  • Andrzej Budkowski
  • Lewis Fetters
  • Jacob Klein


Coexisting binary polymer phases are characterised by very small interfacial energies even well below their critical solution temperature. By extension of Cahn’s ideas concerning critical point wetting, one expects that such low energies should readily lead to the exclusion of one of the phases from any interface which favours the other; this phenomenon has implications for practical surface-related effects, ranging from welding to wear properties. Using nuclear reaction analysis, we have now observed such complete wetting behaviour from two different classes of binary polymer mixtures. These are mixtures of statistical olefinic copolymers of structure -(C2H3(C2H5))x((CH2)4)1−x-, with differing x values, and an isotopic pair of deuterated and protonated polystyrene. In the former case we have been able to follow the growth with time t of the wetting layer thickness l; our results indicate l ~ logt.


Liquid Film Interfacial Energy Polymer Mixture Surface Segregation Partial Wetting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Young T (1805) Phil. Trans. Roy. Soc. London 95: 65CrossRefGoogle Scholar
  2. 2.
    Schick M (1990) In: Charvolin J, Joanny JF, Zinn-Justin J (eds) Les Houches, session XLVIII, Liquids at Interfaces, pp. 419–497. North Holland, AmsterdamGoogle Scholar
  3. 3.
    Calm JW (1977) J. Chem. Phys. 66: 3667CrossRefGoogle Scholar
  4. 4.
    de Gennes PG (1985) Rev. Mod. Phys. 57: 827CrossRefGoogle Scholar
  5. 5.
    Dietrich S (1988) In: Domb C, Lebowitz J (eds). Phase Transitions and Critical Phenomena. Academic Press, LondonGoogle Scholar
  6. 6.
    Schmidt I, Binder K (1985) J. Physique 46: 1631CrossRefGoogle Scholar
  7. 7.
    Flory PJ (1953) Principles of polymer chemistry, Cornell University Press, IthacaGoogle Scholar
  8. 8.
    de Gennes PG (1979) Scaling concepts in Polymer Physics, Cornell University Press, LondonGoogle Scholar
  9. 9.
    Jones RALea (1989) Phys. Rev. Lett. 62: 280CrossRefGoogle Scholar
  10. 10.
    Bhatia QS, Pan DH, Koberstein J (1988) Macromolecules 21: 2166CrossRefGoogle Scholar
  11. 11.
    Steiner U, Klein J, Eiser E, Budkowski A, Fetters LJ (1992) Science 258: 1126CrossRefGoogle Scholar
  12. 12.
    Budkowski A, Klein J, Eiser E, Steiner U, Fetters LJ (1993) Macromolecules 26: 3858CrossRefGoogle Scholar
  13. 13.
    Graessley WW, Krishnamoorti R, Balsara NP, Fetters LJ, Lohse DJ, Schulz DN, Sissano JA (1193) Macromolecules 26: 1137CrossRefGoogle Scholar
  14. 14.
    Chaturvedi UK, Steiner U, Zak O, Krausch G, Schatz G, Klein J (1990) Appl. Phys. Lett. 56: 1228CrossRefGoogle Scholar
  15. 15.
    Klein J (1990) Science 250: 640CrossRefGoogle Scholar
  16. 16.
    Budkowski A, Steiner U, Klein J, Schatz G (1992) Europhysics Letts. 18: 705CrossRefGoogle Scholar
  17. 17.
    Bruder F, Brenn R (1992) Phys. Rev. Lett. 69: 624CrossRefGoogle Scholar
  18. 18.
    Steiner U, Klein J, Fetters LJ - to be publishedGoogle Scholar
  19. 19.
    Bates FS, Wignall GD (1986) Phys. Rev. Lett. 57: 1429CrossRefGoogle Scholar
  20. 20.
    Lipowsky R, Huse DA (1986) Phys. Rev. Lett. 57: 353CrossRefGoogle Scholar
  21. 21.
    Jones RAL - Personal communicationGoogle Scholar
  22. 22.
    While there are no predictions for the case of wetting layer build-up for the precise situation corresponding to our geometry, there is a related theoretical study by Langer (Ann. Phys. (N.Y.), vol.65, p.53, 1971) which we recall in passing. This discusses how a series of one dimensional spinodal domains evolve with time. This situation bears some resemblance to our experiments in the following sense. Starting with an array of equidistant spinodal domains of the same width, every second domain grows while the domain adjacent to it shrinks, both with a logarithmic time dependence, while the interdomain region at the coexisting composition retains a constant width. This is very reminiscent of the time-evolution of the adjacent domains in the profiles in fig. 5, though the driving force for the growth of the wetting layer differs from that of the spinodal decomposition.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Ullrich Steiner
    • 1
  • Erika Eiser
    • 1
  • Andrzej Budkowski
    • 1
  • Lewis Fetters
    • 2
  • Jacob Klein
    • 1
  1. 1.Weizmann Institute of ScienceRehovotIsrael
  2. 2.Exxon Research and Engineering Co.AnnandaleUSA

Personalised recommendations