The Role of Collagenase in Wound Healing

  • R. A. Hatz
  • N. C. S. von Jan
  • F. W. Schildberg


Specific collagenases possess the unique capability of degrading native collagen otherwise resistant to breakdown by all other proteases. in wound healing mesenchymal cells release collagenase irto the extracellular matrix and phagocytic cells lyse collagen, either on their surface or intracellularJy. Coilagenase production is stimulated by interleukin-1, the platelet-derived growth factor (PDCF), and others. Several factors terminate collagenase activity; the most potent is alpha-2-macroglobulin. The best characterized bacterial coJfagenase is produced by Clostridium histolyticum. in contrast to a variety of other clinically tested enzymes, collagenases are the only proteases which can specifically hydrolyze native collagen. Wound healing can be accelerated by enhancement of macrophage chemotaxis due to collagen-derived peptides generated by bacterial collagenase. An increase in macrophage numbers will lead to enhanced cytokine secretion in wounds. In third-degree burn wounds, the event of hypertrophic scarring and scar contracture was markedly reduced in collagenase-treated wounds. Further studies are needed to clarify these effects of collagenase.


Collagen Type Hypertrophic Scar Native Collagen Collagenase Activity Scar Contracture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harris ED Jr, Krane SM (1974) Collagenases (first of three parts) N Engl J Med 291: 557–563PubMedCrossRefGoogle Scholar
  2. 2.
    Postlethwaite AE, Kang AH (1976) Collagen-and collagen peptide-in-duced chemotaxis of human blood monocytes. J Exp Med 143: 1299–1307PubMedCrossRefGoogle Scholar
  3. 3.
    Wize J, Woitecka-Lukasik E, Maslinski S (1986) Collagen-derived peptides release mast cell histamine. Agents Actions 18: 262–265PubMedCrossRefGoogle Scholar
  4. 4.
    Postlethwaite AE, Seyer JM, Kang AH (1978) Chemotactic attraction of human fibroblasts to type I, II and III collagens and collagen-derived peptides. Proc Natl Acad Sci USA 75: 871–875PubMedCrossRefGoogle Scholar
  5. 5.
    Craig P (1973) Collagenase activity in cutaneous scars. Hand 5: 239–246PubMedCrossRefGoogle Scholar
  6. 6.
    Dresden MH, Heilmann SA, Schmidt JD (1972) Collagenolytic enzymes in human neoplasms. Cancer Res 32: 993–996PubMedGoogle Scholar
  7. 7.
    Liotta LA, Tyggvason K, Gorbisa S, Hart J, Foltz CM, Shafie S (1980) Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284: 67–68PubMedCrossRefGoogle Scholar
  8. 8.
    Young HC, Wheeler MH (1983) Collagenase inhibition in the healing colon, J R Soc Med 76: 32–36PubMedGoogle Scholar
  9. 9.
    Kishi K, Hashimoto Y, Aoyama H, Izawa Y, Hayakawa T (1984) Direct extraction of collagenase from human post-burn wound tissues. Biomed Res 5: 149–156Google Scholar
  10. 10.
    Grillo HC, Gross J (1967) Collagenolytic activity during mammalian wound repair. Dev Biol 15: 300–317PubMedCrossRefGoogle Scholar
  11. 11.
    Black CT, Hennessey PJ, Ford EG, Andrassy RJ (1989) Protein glycosylation and collagen metabolism in normal and diabetic rats. J Surg Res 47: 200–202PubMedCrossRefGoogle Scholar
  12. 12.
    Mallya SK, Mookhtiar KA, Gao Y, Brew K, Dioszegi M, Birkedal-Hansen H, van Wart HE (1990) Characterization of 58-kilodalton human neutrophil collagenase: comparison with human fibroblast collagenase. Biochemistry 29: 10628–10634PubMedCrossRefGoogle Scholar
  13. 13.
    Birkedal-Hansen B, Moore WGI, Taylor RE, Bhown AS, Birkedal-Hansen H (1988) Monoclonal antibodies to human fibroblast collagenase. Inhibition of enzymatic activity, affinity purification of the enzyme and evidence for clustering of epitopes in the NH2-terminal end of the activated enzyme. Biochemistry 27: 6751–6758PubMedCrossRefGoogle Scholar
  14. 14.
    Dayer J-M, Stephenson ML, Schmidt E, Karge W, Krane SM (1981) Purification of a factor from human blood monocyte-macrophages, which stimulates the production of collagenase and PGE2 by cells cultured from rheumathoid synovial tissues. FEBS Lett 124: 253PubMedCrossRefGoogle Scholar
  15. 15.
    Postlethwaite AE, Lachman LB, Mainardi CL, Kang AH (1983) Interleukin 1 stimulation of collagenase production by cultured fibroblasts. J Exp Med 157: 801–806PubMedCrossRefGoogle Scholar
  16. 16.
    Bauer EA, Cooper TW, Huang JS, Altman J, Deuel TF (1985) Stimulation in vitro of human skin collagenase expression by platelet-derived growth fractor. Proc Natl Acad Sci USA 82: 4132–4136PubMedCrossRefGoogle Scholar
  17. 17.
    Macartney HW, Tschesche H (1981) A metal ion requirement for activation of latent collagenase from human PMNLs. Hoppe-Seylers Z Physiol Chem 362: 1523–1531PubMedCrossRefGoogle Scholar
  18. 18.
    Keil B (1988) Recent development in the research of structure-function relationships in collagenases. Pathol Biol 36: 1112–1118PubMedGoogle Scholar
  19. 19.
    Boxer AM, Gottesman N, Bernstein H, Mandi I (1969) Débridement of dermal ulcers and decubitus with collagenase. Geriatrics 24: 75–86PubMedGoogle Scholar
  20. 20.
    Lee LK, Ambrus JL (1975) Collagenase therapy for decubitus ulcers. Geriatrics 30: 91–98PubMedGoogle Scholar
  21. 21.
    Varma AO, Bugatch E, Gemram FM (1973) Débridement of dermal ulcers with collagenase. Surg Gynecol Obstet 136: 281–282PubMedGoogle Scholar
  22. 22.
    Paul E (1990) Wundheilung unter Iruxol. Fortschr Med 35: 679–681Google Scholar
  23. 23.
    Blum G (1973) Therapeutische Erfahrungen mit Iruxol bei Ulcera cruris, Dekubitus und Verbrennungen. Schweiz Rundsch Med Prax 62: 820–826PubMedGoogle Scholar
  24. 24.
    Purder K (1973) Erfahrungsbericht über die Anwendung von Iruxol Salbe bei Verbrennungen. Z Allgemeinmed 49: 856–858PubMedGoogle Scholar
  25. 25.
    Albini A, Adelmann-Grill BC (1985) Collagenolytic cleavage products of collagen type I as chemoattractants for human dermal fibroblasts. Eur J Cell Biol 36: 104–107PubMedGoogle Scholar
  26. 26.
    Diegelmann RF, Bryant CP, Cohen IK (1977) Tissue alpha-globulins in keloid formation. Plast Reconstr Surg 59: 418–423PubMedCrossRefGoogle Scholar
  27. 27.
    Cohen IK, Diegelmann PF, Keiser HR (1973) Collagen metabolism in keloid and hypertrophic scar. In: Longacre JJ (ed) The ultrastructure of collagen. Thomas, Springfield, pp 199–212Google Scholar
  28. 28.
    Hembry RM, Ehrlich HP (1986) Immunolocalization of collagenase and tissue inhibitor of metalloproteinases (TIMP) in hypertrophic scar tissue. Br J Dermatol 115: 409–420PubMedCrossRefGoogle Scholar
  29. 29.
    Friedman K, Pollack SV, Manning T, Pinell SR (1986) Degradation of porcine dermal connective tissue by collagenase and hyaluronidase. Br J Dermatol 115: 403–408PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • R. A. Hatz
    • 1
  • N. C. S. von Jan
    • 1
  • F. W. Schildberg
    • 1
  1. 1.Department of Surgery, Klinikum GrosshadernLudwig-Maximilians-UniversityMunichGermany

Personalised recommendations