Advertisement

BIOFIX pp 87-92 | Cite as

Literatur

  • Heinz Gerngroß
  • Horst Peter Becker

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Alexander H, Corcoran S, Parsons JR, Weiss AB (1981) Internal fracture fixation with partially degradable plates. Bioengineering 9th Conference Elmsford, New York, pp 115–118Google Scholar
  2. 2.
    Alexander H, Langrana N, Massengill JB, Weiss AB (1981) Development of new methods for phalangeal fracture fixation. J Biomechanics 14: 377–378CrossRefGoogle Scholar
  3. 3.
    Barbosa MA (1991) Corrosion mechanisms of metallic biomaterials. In: Barbosa MA (ed.): Biomaterials Degradation, Elsevier Science Publisher, Amsterdam, pp. 227–257.Google Scholar
  4. 4.
    Barrows TH, Johnson JD, Gibson SJ, Grussing DM (1986) The design and synthesis of bioresorbable polyester-amides. Clin Mater 1: 233–257CrossRefGoogle Scholar
  5. 5.
    Becker D (1988) Erhaltungsoperation bei Radiusköpfchenfraktur mittels Pinnung mit dem resorbierbaren Material Biofix. Handchirurgie 20: 157–159Google Scholar
  6. 6.
    Becker HP, Gerngroß H: Fixation of cortico-caneellous bone grafts with SR-PGA screws. In: Törmälä P (ed) Self-reinforced biodegradable polymeric composites in surgery. CRC press, Boca Raton (in press)Google Scholar
  7. 7.
    Becker HP, Steinmann R, Evers B, Gerngroß H: Osteosynthesen mit re-sorbierbaren Materialien in der Extremitätenchirurgie - Spannungsfeld zwischen Wunschtraum und gesicherter Indikation. Wehrmed Mschr (im Druck)Google Scholar
  8. 8.
    Bischoff CA, Waiden P(1893) In: Liebigs Annalen der Chemie 1979: 46–48 zitiert bei Higgins NA (1954) U.S. Patent, 2 676 945Google Scholar
  9. 9.
    Blauth, W, Schuchardt E (eds) (1986) Orthopädisch-chirurgische Operationen am Knie. Thieme, Stuttgart New YorkGoogle Scholar
  10. 10.
    Böhringer Ingelheim KG (1986) Basisdaten und Eigenschaften resorbier-barer Polyester.Google Scholar
  11. 11.
    Böstman O, Vainionpää S, Hirvensalo E et al. (1987) Biodegradable internal fixation for malleollar fractures. J Bone Joint Surg [Br] 69: 615–619Google Scholar
  12. 12.
    Böstman O, Hirvensalo E, Mäkinen J, Rokkanen P (1990) Foreign-body reactions to fracture fixation implants of biodegradable synthetic polymers. J Bone Joint Surg [Br] 72: 592–596Google Scholar
  13. 13.
    Böstman O (1991) Osteolytic changes accompanying degradation of ab-sorbable fracture implants. J Bone Joint Surg [Br] 73: 679–682Google Scholar
  14. 14.
    Böstman O, Hirvensalo E, Partio E, Törmälä P, Rokkanen P (1992) Resorbierbare Stäbchen und Schrauben aus Polyglykolid bei der Stabilisie-rung von Malleolarfrakturen. Unfallchirurg 95: 109–112PubMedGoogle Scholar
  15. 15.
    Carothers W (1932) zitiert bei Higgins NA (1954) U.S. Patent, 2 676 945Google Scholar
  16. 16.
    Christel P, Chabot F, Leray JC, Morin C, Vert M (1982) Biodegradable composites for internal fixation. In: Winter GD, Gibbon DF, Plenk H (eds) Biomaterials 1980. Wiley, New York, p 271Google Scholar
  17. 17.
    Claes L, Burri C, Kiefer H, Mutschier W (1986) Resorbable pins for the refixation of osteochondral fragments. In: Christel P, Meunier A, Lee ACJ (eds) Biodegradable and biomechanical performance of biomaterials. Elsevier Science Publisher, Amsterdam, pp 257–262.Google Scholar
  18. 18.
    Claes L, Burri C, Kiefer H, Mutschier W (1986) Resorbierbare Implantate zur Refixierung von osteochondralen Fragmenten in Gelenkflächen. Akt Traumatol 16: 74–77Google Scholar
  19. 19.
    Cutright DE, Hunsuck EE, Beasley JD (1971) Fracture reduction using a biodegradable material, polylactic acid. J Oral Surg 29: 393–397PubMedGoogle Scholar
  20. 20.
    Cutright DE, Hunsuck EE (1972) The repair of the orbital floor using biodegradable polylactic acid. Oral Surg 33: 28–34PubMedCrossRefGoogle Scholar
  21. 21.
    Cutright DE, Perez B, Beasley JD Larson WJ, Posey WR (1974) Degradation rates of polymers and copolymers of polylactic and polyglycolic acids. Oral Surg 37: 142–147Google Scholar
  22. 22.
    Dijkema ARA, Van Der Eist M, Breederfeld RS, Verspui G, Patka P, Haarman HJTM (1993) Surgical treatment of fracture dislocations of the ankle joint with biodegradable implants: a randomized study. J Trauma 34: 82–84PubMedCrossRefGoogle Scholar
  23. 23.
    Dociu N, Hein P (1981) PDS, ein neues chirurgisches Nahtmaterial. Ethicon OP-Forum 108: 4Google Scholar
  24. 24.
    Eitenmüller J, Gerlach KL, Schmickal T, Muhr G (1987) Semirigide Plattenosteosynthesen unter Verwendung absorbierbarer Polymere als temporäre Implantate. I. Einführung, chemische Zusammensetzung und materialkundliche Untersuchungen. Chirurg 58: 759–763Google Scholar
  25. 25.
    Eitenmüller J, Gerlach KL, Schmickal T, Muhr G (1987) Semirigide Plattenosteosynthesen unter Verwendung absorbierbarer Polymere als temporäre Implantate. II. Tierexperimentelle Untersuchungen. Chirurg 58: 831–839Google Scholar
  26. 26.
    Eitenmüller J, Gerlach KL, Schmickal T, Krause G (1987) Erste tierex-perimentelle Erfahrungen bei der Verwendung von Platten und Schrauben aus vollständig resorbierbarem Polylactid zur Stabilisierung des osteoto- mierten Radius am Beagle. Hefte Unfallheilk 181: 303–308Google Scholar
  27. 27.
    Eitenmüller J, Entenmann H, Muhr G (1988) Treatment of ankle fractures with complete biodegradable plates and screws of molecular weight po- lylactide. Transactions 3rd World Biomaterials Congress, Kyoto, p 195.Google Scholar
  28. 28.
    Frazza EJ, Schmitt EE (1971) A new absorbable suture. J Biomed Mater Res Symp 1: 43–58CrossRefGoogle Scholar
  29. 29.
    Friden T, Rydholm U (1992) Severe aseptic synovitis of the knee after biodegradable internal fixation. A case report. Acta Orthop Scand 63: 94–97.Google Scholar
  30. 30.
    Galante JO, Lemons J, Spector M, Wilson PD jr, Wright TM (1991) The biologic effect of implant materials. J Orthop Res 9: 760–775Google Scholar
  31. 31.
    Gerlach KL (1986) Tierexperimentelle Untersuchungen zur Anwendung biologisch abbaubarer Polymere in der Mund-Kiefer-Gesichtschirurgie. Habil Schrift, Universität KölnGoogle Scholar
  32. 32.
    Gerngroß H, Becker HP (1993) Bioresorbierbare Schrauben: Möglich-keiten und Grenzen bioresorbierbarer Osteosynthesen. In: Gahr R.H. (Hrsg.): Entwicklungen in der Unfallchirurgie. Rückblick - Ausblick. Springer, Berlin Heidelberg New YorkGoogle Scholar
  33. 33.
    Getter L, Cutright DE, Baskar SN, Augsburg JK (1972) Biodegradable intraosseus appliance in the treatment of mandibular fractures. J Oral Surg 30: 344–348PubMedGoogle Scholar
  34. 34.
    Gilding DK, Reed AM (1979) Biodegradable polymers for use in surgery - polyglycolic/poly(lacticacid) homo- and copolymers. Polymer 20: 1459–1464CrossRefGoogle Scholar
  35. 35.
    Glatzmaier J (1989) Vergleichende Untersuchungen verschiedener resor-bierbarer Implantatmaterialien. Med. Dissertation, Universität UlmGoogle Scholar
  36. 36.
    Greve H, Holste J (1986) Relaxation osteochondraler Fragmente durch resorbierbare Kunststoff stifte. Akt Traumatol 15: 145–149Google Scholar
  37. 37.
    Higgins NA (1954) Condensation polymers of hydroxyacetic acid. U.S. Patent, 2 676 945Google Scholar
  38. 38.
    Hoffmann R, Krettek C, Haas N, Tscherne H (1989) Die distale Radi-usfraktur. Frakturstabilisierung mit biodegradäblen Osteosynthesestiften ( Biofix ). Unfallchirurg 92: 430–434Google Scholar
  39. 39.
    Hoffmann R, Krettek C, Hetkämper A, Haas N, Tscherne H (1992) Osteosynthese distaler Radiusfrakturen mit biodegradablen Frakturstiften - Zweijahresergebnisse. Unfallchirurg 95: 99–105PubMedGoogle Scholar
  40. 40.
    Hollinger JO (1983) Preliminary report on the osteogenic potential of a biodegradable polymer of polylactid (PLA) and polyglykolide (PGA) J Biomed Mater Res 17: 71–82Google Scholar
  41. 41.
    Hope PG, Williamson DM, Coates CJ, Cole WG (1991) Biodegradable pin fixation of elbow fractures in children. J Bone Joint Surg [Br] 73: 965–968Google Scholar
  42. 42.
    Jahn R, Diederichs D, Friedrich B (1989) Resorbierbare Implantate und ihre Anwendung am Beispiel der Radisuköpfchenfraktur. Aktuel Traumatol 19: 281–286PubMedGoogle Scholar
  43. 43.
    Kelley BS, Dunn RL, Jackson TE, Potter AG, Ellis DN (1988) Transactions of 3rd World Biomaterials Congress, Kyoto, p 471Google Scholar
  44. 44.
    Kronenthal RL (1975) Biodgradable polymers in medicine and surgery. Polym Sci Technol 8: 119–137Google Scholar
  45. 45.
    Kulkarni RK, Moore EG, Hegyeli HF, Leonard F (1971) Biodegradable poly(lactic acid) polymers. J Biomed Mater Res 5: 169–181PubMedCrossRefGoogle Scholar
  46. 46.
    Leixnering M, Hintringer W, Poigenfürst J (1989) Operationstechnik und Ergebnisse bei der Stabilisierung von Knöchelfrakturen mit dem resor-bierbaren Material Biofic C. Hefte Unfallheilk 207: 329–333Google Scholar
  47. 47.
    Leixnering M, Moser KL, Poigenfürst J (1989) Die Verwendung von Biofix C zur Stabilisierung von Innenknöchelfrakturen. Akt Traumatol 19: 113–115Google Scholar
  48. 48.
    Lowe CE (1954) Preparation of high molecular weight polyhydroxy-acetic ester. U.S. Patent, 2 668 162Google Scholar
  49. 49.
    Majola A, Vainionpää S, Vihtonen K, Matti M, Vasenius J, Törmälä P, Rokkanen P (1991) Absorption, biocompatibility, and fixation properties of polylactic acid in bone tissue: an experimental study in rats. Clin Orthop 268: 260–269PubMedGoogle Scholar
  50. 50.
    Mäkelä EA, Bötman O, Kekomäki M, Södergärd J, Vainio V, Törmälä P, Rokkanen P (1992) Biodegradable fixation of distal humeral physeal fractures. Clin Orthop 283: 237–243PubMedGoogle Scholar
  51. 51.
    Matlaga BF, Salthouse TN (1983) Ultrastructural observations of cells at the interface of a biodegradable polymer: polyglactin 910. J Biomed Mater Res 17: 185–197PubMedCrossRefGoogle Scholar
  52. 52.
    Miller RA, Brady JM, Cutright DE (1977) Degradation rate of oral resorbable implants (polylactates and polyglycolates): Rate modification with changes in PGASS/PLA copolpolymer ratios. J Biomed Mater Res 11: 711–719Google Scholar
  53. 53.
    Moiseev YV, Daurova TT, Voronkava O (1979) The specifity of polymer degradation in the living body. J Polym Sci 66: 269 - 276Google Scholar
  54. 54.
    Müller ME, Allgöwer M, Schneider R, Willenegger H (Hrsg) (1991) Manual of internal fixation: techniques, recommended by the AO-ASIF Group. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  55. 55.
    Nelson JF, Stanford HG, Cutright DE (1977) Evaluation and comparisons of biodegradable substances as osteogenic agents. Oral Surg 43: 836–843CrossRefGoogle Scholar
  56. 56.
    Nockemann PF (1992) Die chirurgische Naht. 4. Aufl. Thieme, Stuttgart New YorkGoogle Scholar
  57. 57.
    Päivärinta U, Böstman O, Majola A, Toivonen T, Törmälä P, Rokkanen P (1993) Intraosseous cellular response to biodegradable fracture fixation screws made of polyglycolide or polylactide. Arch Orthop Trauma Surg 112: 71–74PubMedCrossRefGoogle Scholar
  58. 58.
    Parsons JR, Alexander H, Corcoran SF, Weiss AB (1979) Development of variable stiffness, absorbable bone plate. 25th Annual ORS, San Fran-cisco USA, p 168Google Scholar
  59. 59.
    Parsons JR (1985) Resorbable materials and composites; new concepts in orthopedic biomaterials. Orthopedics 8: 908–915Google Scholar
  60. 60.
    Partio EK, Hirvensalo E, Partio E et al (1992) Talocrural arthrodesis with absorbable screws. Acta Orthop Scand 63: 170–172PubMedCrossRefGoogle Scholar
  61. 61.
    Partio, E Die Frühmobilisierung im Vergleich zur Immobilisierung bei mit absorbierbaren Schrauben versorgten Malleolarfrakturen. Urifallchirurg (im Druck)Google Scholar
  62. 62.
    Pihlajamäki H, Böstman O, Hirvensalo E, Törmälä P, Rokkanen P (1992) Absorbable pins of self-reinforced poly-l-lactic acid for fixation of fractures and osteotomies. J Bone Joint Surg [Br] 74: 853–857Google Scholar
  63. 63.
    Poigenfürst J, Leixnering M, Ben Mokhtar M (1990) Lokalkomplikationen nach Implantationen von Biorod. Akt Traumatol 20: 157–159Google Scholar
  64. 64.
    Reed AM, Gilding DK (1981) Biodegradable polymers for use in surgery - poly(glycloic acid)/poly(lactic acid) homo and copolymers: 2. In vitro degradation. Polymer 22: 494–498Google Scholar
  65. 65.
    Rodegra H (1982) Zur Geschichte der Wundversorgung. Arzt Krankenhaus 4: 152–158Google Scholar
  66. 66.
    Rokkanen P, Böstman O, Vainionpää S et al. (1985) Biodegradable implants in fracture fixation: early results in treatment of fractures of the ankle. Lancet: 1422–1424Google Scholar
  67. 67.
    Rosson J, Egan J, Shearer, J, Monro, P (1991) Bone weakness after the removal of plates and screws. Cortical atrophy or screw holes? J Bone Joint Surg [Br] 73: 283–286Google Scholar
  68. 68.
    Rosson J, Petley GW, Shearer JR: (1991) Bone structure after removal of internal fixation plates. J Bone Joint Surg [Br] 73: 65–67Google Scholar
  69. 69.
    Ruf W, Schult W, Buhl K (1990) Die Stabilisierung von Malleolarfrakturen und Flakeverletzungen mit resorbierbaren Polyglykolid-Stiften-Biofix. Unfallchirurg 16: 202–209CrossRefGoogle Scholar
  70. 70.
    Salthouse TN, Matlaga BJ, Oleary RK (1986) Microspectrophotometry of macrophage lysosomal enzyme activity. Clin Mater 1: 233–257CrossRefGoogle Scholar
  71. 71.
    Schmitt EE, Polistina RA (1969) Polyglycolic acid prosthetic devices. U.S. Patent 3 463 158Google Scholar
  72. 72.
    Schneider AK (1955) Polymers of high melting lactide. U.S. Patent 2 703 316Google Scholar
  73. 73.
    Steinmann R, Gerngroß H, Härtel W (1990) Die Verwendung bioresor- bierbarer Implantate ( Biofix) in der Chirurgie. Akt Traumatol 20: 102–107Google Scholar
  74. 74.
    Thiede A, Jostarndt L, Lünstedt B, Sonntag HG (1980) Kontrollierte, experimentelle histologische und mikrobiologische Untersuchungen zur Hemmwirkung von Polyglykolsäurefäden bei Infektionen. Chirurg 51: 35–38PubMedGoogle Scholar
  75. 75.
    Törmälä P, Vainionpää S, Kilpikari J, Rokkanen P (1987) The effects of fiber reinforcement and gold plating on the flexural and tensile strength of PGA/PLA cpopolymer materials in vitro. Biomaterials 8: 42–45PubMedCrossRefGoogle Scholar
  76. 76.
    Törmälä P, Vasenius J, Vainionpää S, Laiho J, Pohjonen T, Rokkanen P (1991) Ultra-high-strength absorbable self-reinforced polyglycolide (SR- PGA) composite rods for internal fixation of bone fractures: In vitro and in vivo study. J Biomed Mater Res 25: 1–25Google Scholar
  77. 77.
    Törmälä P (1992) Biodegradable self-reinforced composite materials; manufacturing structure and mechanical properties. Clin Mater 10: 29–34PubMedCrossRefGoogle Scholar
  78. 78.
    Törmälä P, Pohjonen T, Helevirta P et al. (1992) Manufacturing, structure and properties of ultra-high strength biodegradable polymeric composites. In: Migilaresi C, Kardos JL (eds): Biomedical applications of composites, CRC Press, Boca RatonGoogle Scholar
  79. 79.
    Tunc DL, Lehmann WB, Stomwater A, Kummer F (1985) Evaluation of high molecular weight polylactide osteosynthesis device. Transactions 11th Ann Meeting of the Society of Biomaterials VIE, p 8Google Scholar
  80. 80.
    Uthoff HK (1980) Current concepts of internal fixation of fractures. Springer, Berlin Heidelberg New YorkGoogle Scholar
  81. 81.
    Vainionpää S (1986) Biodegradation of polyglycolic acid in bone tissue: an experimental study on rabbits. Arch Orthop Trauma Surg 104: 333–338PubMedCrossRefGoogle Scholar
  82. 82.
    Vainionpää S, Vihtonen K, Mero M, et al. (1986) Fixation of experimental osteotomies of the distal femur of rabbits with biodegradable material. Arch Orthop Trauma Surg 106: 1–4PubMedCrossRefGoogle Scholar
  83. 83.
    Vainionpää S, Kilpikari J, Laiho J, Helevirta P, Rokkanen P, Törmälä P (1987) Strength and strength retention in vitro, of absorbable, selfrein- forced polyglycolide ( PGA) rods for fracture fixation. Biomaterials 8: 46–48Google Scholar
  84. 84.
    Vainionpää S, Rokkanen P, Törmälä P (1989) Surgical applications of biodegradable polymers in human tissues. Progr Polym Sci 14: 679–716CrossRefGoogle Scholar
  85. 85.
    van Randenborgh J (1983) Biodegenerable Implantate rjm Knochen. Med. Dissertation, Universität WürzburgGoogle Scholar
  86. 86.
    Vasenius J, Vainionpää, Vihtonen K, Mero M, Mäkelä A, Törmälä P, Rokkanen P (1990) A histomorphological study on self-reinforced poly-glycolide ( SR-PGA) osteosynthesis implants coated with slowly absorbable polymers. J Biomed Mater Res 24: 1615–1635Google Scholar
  87. 87.
    Vert M, Chabot F, Leray J, Christel P (1981) Stereo-regular bioabsorbable polyester for orthopedic surgery. Makromol Chem Suppl 5: 30–41CrossRefGoogle Scholar
  88. 88.
    Vert M, Christel P, Chabot F, Leray J (1984) Bioresorbable plastic material for bone surgery. In: Hastings D, Ducheyne P (eds.) Macromolecular biomaterials. CRC Press, Boca Raton, p 119Google Scholar
  89. 89.
    Wilhams DF, Mort E (1977) Enzyme accelerated hydrolysis of polygly-colic acid. J Bioengin 1: 231–238Google Scholar
  90. 90.
    Williams DF (1979) Some observations on the role of cellular enzymes in the in-vivo degradation of polymers. Spech Tech Publ 684: 61–75Google Scholar
  91. 91.
    Williams DF (1982) Review. Biodegradation of surgical polymers. J Mater Sci 17: 1233–1246CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Heinz Gerngroß
    • 1
  • Horst Peter Becker
    • 1
  1. 1.BundeswehrkrankenhausUlmGermany

Personalised recommendations