Skip to main content

Type-I (insulin-dependent) and type-II (non-insulin-dependent) diabetes mellitus in BC1[(NODxMus spretus)F1xNOD] mice

  • Conference paper
Autoimmunity: Experimental Aspects

Abstract

The nonobese diabetic (NOD), nonobese nondiabetic (NON), cataract Shionogi (CTS), ICR-L-Ishibe (ILI) and ICR-I-Ishibe (III) mouse strains have been used in our experiments. The NOD, NON, CTS and ILI mice were originally derived from outbred Institute of Cancer Research (ICR) mice (Figure 1). One mouse with cataracts and small eyes was found in outbred ICR mice and an inbred cataract Shionogi (CTS) strain characterized by cataracts and microphthalmia was established (Ohtori et al, 1968). Since cataracts are often observed in diabetic patients, two sublines were separated at the sixth generation during the process of establishing the CTS strain according to fasting blood glucose levels; one with euglycemia (fasting blood glucose: approximately 100 mg/dl) and the other with slight hyperglycemia (fasting blood glucose: approximately 150 mg/dl). One female mouse in the former line spontaneously developed diabetes at the 20th generation and the inbred NOD strain was established by selective breeding for diabetes. From the latter line the inbred non-obese nondiabetic (NON) strain was established. More details on the genealogy is described in Ikegami et al, 1988. Inbred ILI and III mice were established directly from outbred ICR mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acha-Orbea H., McDevitt H.O. (1987) The first external domain of the non obese diabetic mouse class II I-Ap chain is unique. Proc. Natl.Acad.Sci.USA 84, 2435–2439

    Article  PubMed  CAS  Google Scholar 

  • Adams D. (1982) Molecules, membranes and macrophage activation. Immunol Today 3, 285–287

    Article  Google Scholar 

  • Araki E., Sun X.J., Haag B., Chuang L.M., Zhang Y., Yang-Feng T.L., White M.F., Kahn C.R. (1993) Human skeletal muscle insulin receptor substrate-1. Diabetes 42, 1041–1054

    Article  PubMed  CAS  Google Scholar 

  • Bendtzen K., Mandrup-Poulsen T., Nerup J., Nielsen J.H., Dinarello C.A., Svenson M. (1986) Cytotoxicity of human pi 7 interleukin-1 for pancreatic islets of Langerhans. Science 232, 1545–1547

    Article  PubMed  CAS  Google Scholar 

  • Beutler B., Greenwald D., Hulmes J.D., Chang M., Pan Y.C.E., Mathison J., Ulevitch R., Cerami A. (1985) Identity of tumor necrosis factor and macrophages-secreted factor cachectin. Nature 316, 552–554

    Article  PubMed  CAS  Google Scholar 

  • Boerwinkle: E., Xiong W., Fourest E., Chan L. (1989) Rapid typing of tandemly repeated hypervariable loci by the polymerase chain reaction: Application to the apolipoprotein B 3’ hypervariable region. Proc. Natl. Acad. Sci. USA 86, 212–216

    Article  PubMed  CAS  Google Scholar 

  • Bradley B.J., Haskins K., LaRosa F.G., Lafferty K.J. (1992) CD8 T cells are not required for islet destruction induced by a CD4+ islet-specific T cell clone. Diabetes 41, 1603–1608

    Article  PubMed  CAS  Google Scholar 

  • Brosnan C.F., Bornstein M.B., Bloom B.R. (1981) The effects of macrophage depletion on the clinical and pathological expression of experimental allergic encephalomyelitis. J Immunol. 126, 614–620

    PubMed  CAS  Google Scholar 

  • Charlton B., Bacelj A., Mandel T.E. (1988) Administration of silica particles or anti-Lyt2 antibody prevents P-cell destruction in NOD mice given cyclophosphamide. Diabetes 37, 930–935

    Article  PubMed  CAS  Google Scholar 

  • Coleman D.L., Kuzava J.E., Leiter E.H. (1990) Effect of diet on incidence of diabetes in nonobese diabetic mice. Diabetes 39, 432–436

    Article  PubMed  CAS  Google Scholar 

  • Cornall R.J., Prins J-B., Todd J.A., Pressey A., DeLarato N.H., Wicker L.S., Peterson L.B. (1991) Type 1 diabetes in mice is linked to the interleukin–1 receptor and Lsh/Ity/Bcg genes on chromosome 1. Nature 353, 262–265

    Article  PubMed  CAS  Google Scholar 

  • Dahlquist G., Blom L., Tuvemo T., Nystrom, Sandstrom, A., Wall, S. (1989) The Swedish childhood diabetes study - Results from a nine year case register and a one year case-refernt study indicating that Type 1 (insulin-dependent) diabetes mellitus is associated with both Type 2 (non-insulin-dependent) diabetes mellitus and autoimmune disorders. Diabetologia 32, 2–6

    Article  PubMed  CAS  Google Scholar 

  • De Gouyon, B., Melanitou F., Richard M.F., Requarth M., Hahn I.H., Guenet J.L., Demenais F., Julier C., Lathrop G.M., Boitard C., Avner P. (1993) Genetic analysis of diabetes and insulitis in an interspecific cross of the nonobese diabetic mouse with Mus spretus. Proc. Natl. Acad. Sci. USA 90, 1877–1881

    Article  Google Scholar 

  • Dietrich W., Katz H., Lincoln S.E., Shin H.S., Friedman J., Dracopoli N., Lander E.S. (1992) A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131, 423–447

    PubMed  CAS  Google Scholar 

  • Durum S.K., Schmidt J.A., Oppenheim J.J. (1985) Interleukin-1: an immunological perspective. Ann. Rev. Immunol. 3, 263–287

    Article  CAS  Google Scholar 

  • Elliot R.B., Martin J.M. (1984) Dietary protein: a trigger of insulin-dependent diabetes in the BB rat? Diabetologia 26, 297–299

    Article  CAS  Google Scholar 

  • Elliott R.B., Reddy S.N., Bibby N.J., Kida K. (1988) Dietary prevention of diabetes in the non-obese diabetic mouse. Diabetologia 31, 62–64

    PubMed  CAS  Google Scholar 

  • Garchon H-J., Bedossa P., Eloy L., Bach J-F. Identification and mapping to chromosome 1 of a susceptibility locus for periinsulitis in non-obese diabetic mice (1991) Nature 353, 260–262

    Article  PubMed  CAS  Google Scholar 

  • Gepts W (1965) Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 14, 619–633

    PubMed  CAS  Google Scholar 

  • Ghosh S., Palmer S.M., Rodrigues N.R., Cordell H.J., Hearne C.M., Cornall R.J., Prins J-B., McShane P., Lathrop G.M., Peterson L.B., Wicker L.S., Todd J.A. (1993) Polygenic control of autoimmune diabetes in nonobese diabetic mice. Nature Genetics 4, 404–409

    Article  PubMed  CAS  Google Scholar 

  • Haskins K. and McDuffie M. (1991) Acceleration of diabetes in young NOD mice with a CD4+ islet-specific T cell clone. Science 249, 1433–1436

    Article  Google Scholar 

  • Hattori M., Buse J.B., Jakson R.A., Glimcher L., Dorf M.E., Minami M., Makino S., Moriwaki K., Kuzuya H., Imura H., Strauss W.M., Seidman J.G., Eisenbarth G.S. (1986) The NOD mouse: recessive diabetogenic gene in the major histocompatibility complex. Science 231, 733–735

    Article  PubMed  CAS  Google Scholar 

  • Hattori M., Fukuda M., Ichikawa T., Katoh H., Makino S. (1990) A single recessive “non-MHC” diabetogenic gene in nonobese diabetic (NOD) mice. J Autoimmunity 3, 1–10

    Article  CAS  Google Scholar 

  • Hattori,M Yamato, E., Hirokawa K.J., Petruzzelli M., Makino S., Chapman V.M. (1992) Male backcross mice of NOD with Mus spretus Spain predominantly develop diabetes regardless of MHC homozygosity and heterozygosity. Diabetes 41 (Suppl. 1), 93A.

    Article  Google Scholar 

  • Horio F., Fukuda M., Bonner-Weir S., Hattori M. (1989) Free radical oxygen scavengers (superoxide dismutase and catalase) prevent the development of insulitis in NOD mice. Clinical Research 37, 451A.

    Google Scholar 

  • Horio F., Fukuda M., Katoh H., Petruzzelli M., Yano N., Rittershaus Bonner-Weir S., Hattori M. (1993) Reactive oxygen intermediates in autoimmune islet cell destruction of the NOD mouse by peritoneal exudate cells (rich in macrophages) but not T cells. Diabetologia (in press)

    Google Scholar 

  • Hutchings P., Rosen H., O’Reilly L., Simpson E., Gordon. S., Cooke A. (1990) Transfer of diabetes in mice prevented by blockade of adhesion-promoting receptor on macrophages. Nature 348, 639–642

    Article  PubMed  CAS  Google Scholar 

  • Ikegami H., Makino S., Harada M., Eisenbarth G.S., Hattori M. (1988) The cataract shionogi mouse, a sister strain of the non-obesediabetic mouse: similar class II but different class I gene products. Diabetologia 31, 254–258

    Article  PubMed  CAS  Google Scholar 

  • Ikegami H., Eisenbarth G.S., Hattori M. (1990) MHC-linked diabetogenic gene of the NOD mouse: analysis of genomic DNA amplified by polymerase reaction chain. J. Clin. Invest. 85, 18–24

    Article  PubMed  CAS  Google Scholar 

  • Karasik A., Hattori M. (1993) Use of animal models in the study of diabetes. In Joslin’s Textbook of Diabetes. G. Weir and C.R. Kahn (eds), Lea and Febiger (in press)

    Google Scholar 

  • Lee K., Amano K., Yoon J. (1988) Evidence for initial involvement of macrophage in the development of insulitis in NOD mice. Diabetes 37, 989–991

    Article  PubMed  CAS  Google Scholar 

  • Lehman C.D., Rodin J., McEwen B., Brinton R. (1991) Impact of environmental stress on the expression of insulin-dependent diabetes mellitus. Behavioral Neuroscience 105, 241–245

    Article  PubMed  CAS  Google Scholar 

  • Like A.A., Rossini A.A. (1984) Spontaneous autoimmune diabetes mellitus in the BioBreeding/Worcester rat. Surv Synth Pathol Res. 3, 131–138

    PubMed  CAS  Google Scholar 

  • Lund T., O’Reilly L., Hutchings P., Kanagawa O., Simpson E., Gravely R., Chandler P., Dyson J., Picard J.K., Edwards A., Kioussis D., Cooke A. (1990) Prevention of insulin-dependent diabetes mellitus in non-obese diabetic mice by transgenes encoding modified I–A (3-chain or normal I-E a-chain. Nature 345, 727–729

    Article  PubMed  CAS  Google Scholar 

  • Lund T., Shaikh S., Kendall E., Campbell R.D., Hattori M., Makino S., Cooke A. (1993) RFLP analysis of the MHC class in region defines unique haplotypes for the non-obese diabetic, cataract Shionogi and the non-obese non-diabetic mouse strains. Diabetologia 36, 727–733

    Article  PubMed  CAS  Google Scholar 

  • Makino S., Kunimoto K., Muraoka Y., Mizushima Y., Katagiri K., Tochino Y. (1980) Breeding of a non-obese diabetic strain of mice. Exp Anim 29, 1–13

    CAS  Google Scholar 

  • Makino S., Harada M., Kishimoto Y., Hayashi Y. (1986) Absence of insulitis and overt diabetes in athymic nude mice with NOD genetic background. Exp. Anim. 35, 495–498

    CAS  Google Scholar 

  • Makino S., Kishimoto Y., Kunimoto K., Kawaguchi J., Uchida K. (1991) Localization of the MHC-linked diabetogenic genes of the NOD mouse by using the congenic strains. Diabetes Res. Clin. Pract. 14, S40 (Abstract)

    Google Scholar 

  • Miller B.J., Appel M.C., O’Neil J.J., Wicker L.S. (1988) Both the Lyt2+ and L3T4+ T cell subset are required for the transfer of diabetes in nonobese diabetic mice. J. Immunol. 140, 52–58

    PubMed  CAS  Google Scholar 

  • Miyazaki T., Uno M., Uehara M., Kikutani H., Kishimoto T., Kimoto M., Nishimoto H., Miyazaki J., Yamamura K. (1990) Direct evidence for the contribution of the unique I-Anoc to the development of insulitis in non–obese diabetic mice. 345, 722–724

    CAS  Google Scholar 

  • Murray H.W., Spitalny G.L., Nathan C.F. (1985) Activation of mouse peritoneal macrophages in vitro and in vivo by interferon. J. Immunol. 134, 1619–1622

    PubMed  CAS  Google Scholar 

  • Nakano, N., Kikutani H., Nishimoto H., Kishimoto T. (1991) T cell receptor V gene usage of islet P cell reactive T cells is not restricted in nonobese diabetic mice. J. Exp. Med. 173, 1091–1097

    Article  PubMed  CAS  Google Scholar 

  • Nishimoto H., Kikutani K., Yamamura K., Kishimoto T. (1987) Prevention of autoimmune insulitis by expression of I-E molecules in NOD mice. Nature 328, 432–434

    Article  PubMed  CAS  Google Scholar 

  • Ohtori H., Yoshida T., Inuta T. (1968) “Small eyes and cataract”, a new dominant mutation in the mouse. Exp. Animal. 17, 91–96

    Google Scholar 

  • O’Reilly L.A., Huchings P.R., Crocker P.R., Simpson E., Lund, T. Kioussis, D., Takei F., Baird J., Cooke A. (1991) Characterization of pancreatic islet cell infiltrates in NOD mice: effect of cell transfer and transgenic expression. Eur. J. Immunol. 21, 1171–1180

    Article  PubMed  Google Scholar 

  • Oschilewski U., Kiesel U., Kolb H. (1985) Administration of silica prevents diabetes in BB rats, Diabetes 34, 197–199

    Article  PubMed  CAS  Google Scholar 

  • Ozaki S., Honda H., Maruyama N., Hirose S., Hamaoki M., Sato M., Shirai T. (1983) Genetic regulation of erythrocyte autoantibody production in New Zealand black mice. Immunogenetics 18, 241–254

    Article  PubMed  CAS  Google Scholar 

  • Palmer J.P., Helqvist S., Spinas G.A., Molvig J., Mandrup-Poulsen T., Anderson H.V., Nerup, J. (1989) Interaction of p-cell activity and IL-1 concentration and exposure time in isolated rat islets of Langerhans. Diabetes 28, 1211–1216

    Article  Google Scholar 

  • Podolin P., Pressey A., DeLarato N.H., Fischer P.A., Peterson L.B., Wicker L.S. (1993) I-E+ nonobese diabetic mice develop insulitis and diabetes. J. Exp. Med. 178, 793–803

    Article  PubMed  CAS  Google Scholar 

  • Prins J.B., Todd J.A., Rodrigues N.R., Ghosh S., Hogarth P.M., Wicker L.S., Gaffney E., Podoliri P.L., Fischer P.A., Sirotina A., Peterson L.B. (1993) Linkage on chromosome 3 of autoimmune diabetes and defective Fc receptor for IgG in NOD mice. Science 260, 695–698

    Article  PubMed  CAS  Google Scholar 

  • Prochazka M., Leiter E.H., Serrez D.V., Colman D.G. (1987) Three recessive loci required for insulin-dependent diabetes mellitus in nonobese diabetic mice. Science 237, 286–289

    Article  PubMed  CAS  Google Scholar 

  • Pukel C., Baquerizo H., Rabinovitch A. (1988) Destruction of rat islet cell monolayers by cytokines: Synergistic interactions of interferon-y, tumor necrosis factor, lymphotoxin, and interleukin–1. Diabetes 37, 133–136

    Article  PubMed  CAS  Google Scholar 

  • Scott F.W., Mongeau R., Kardish M., et al (1985) Diet can prevent diabetes in the BB rat. Diabetes 34, 1059–1062

    Article  PubMed  CAS  Google Scholar 

  • Slattery R.N., Kjer-Nielsen L., Allison J., Charlton B., Mandel T.E., Miller J.F.A.P. (1990) Prevention of diabetes in non-obese diabetic I-A transgenic mice. Nature 345, 724–726

    Article  PubMed  CAS  Google Scholar 

  • Sun X.J., Rothenberg P.L., Kahn C.R., Backer J.M., Araki E., Wilden P., Cahill D.A., Goldstein B.J., White M.F. (1991) Structure of the insulin receptor substrate IRS–1 defines a unique signal transduction protein. Nature (Lond) 352, 73–77

    Article  CAS  Google Scholar 

  • Todd J.A., Aitman T.J., Cornall R.J., Ghosh S., Hall J.R.S., Hearne C.M., Knight A.M., Love J.M., McAleer M.A., Prins J-B., Rodrigues N., Lathrop M., Pressey A., DeLarato N.H., Peterson L.B., Wicker L.S. (1991) Genetic analysis of autoimmune type 1 diabetes mellitus in mice. Nature 351, 542–547

    Article  PubMed  CAS  Google Scholar 

  • Wicker L.S., Miller B.J., Mullen Y. (1986) Transfer of autoimmune diabetes mellitus with splenocytes from non-obese diabetic (NOD) mice. Diabetes 35, 855–860

    Article  PubMed  CAS  Google Scholar 

  • Wicker, L.S., Miller B.J., Cocker L.Z., Mcnally S.E., Scott S., Mullen Y., Appel M.C. (1987) Genetic control of diabetes and insulitis in the nonobese diabetic (NOD) mouse. J. Exp. Med. 165, 1639–1654

    Article  PubMed  CAS  Google Scholar 

  • Wicker L.S., Miller B.J., Fischer P.A., Pressey A., Peterson L.B. (1989) Genetic control of diabetes and insulitis in the nonobese diabetic mouse. Pedigree analysis of a diabetic H-2nocb heterozygote. J. Immunol. 142, 81–784

    Google Scholar 

  • Wicker L.S., Appel M.C., Dotta F., Pressey A., Miller B.J., DeLarato N.H., Fischer P.A., Boltz R.C., Peterson L.B. (1992) Autoimmune syndrome in major histocompatibility complex (MHC) congenic strains of nonobese diabetic (NOD ) mice. The NOD MHC is dominant for insulitis and cyclophosphamide-induced diabetes. J. Exp. Med. 176, 67–77

    Article  PubMed  CAS  Google Scholar 

  • White M.F., Livingstone J.N., Backer J.M., Lauris V., Dull T.J., Ullrich A., Kahn C.R. (1988) Mutation of the insulin receptor at tyrosine 960 inhibits sjgnal transmission but does not affect its tyrosine kinase activity. Cell 54, 641–649

    Article  PubMed  CAS  Google Scholar 

  • Ziegler K., Unanue E.R. (1981) Identification of a macrophage antigen-processing event required for I-region-restricted antigen presentation to lymphocytes. J. Immunol. 127, 1869–1875

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hattori, M. et al. (1994). Type-I (insulin-dependent) and type-II (non-insulin-dependent) diabetes mellitus in BC1[(NODxMus spretus)F1xNOD] mice. In: Zouali, M. (eds) Autoimmunity: Experimental Aspects. NATO ASI Series, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78779-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78779-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78781-2

  • Online ISBN: 978-3-642-78779-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics