Skip to main content

Action Spectrum for Photocarcinogenesis

  • Conference paper

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 139))

Abstract

The wavelength dependence of the carcinogenicity of ultraviolet (UV) radiation needs to be known in order to assess the carcinogenic risks of various UV sources, most notably the different solar UV spectra at ground level under depleting stratospheric ozone, This wavelength dependence cannot be extracted from human data (e.g., from epidemiology); it can, however, be directly obtained from animal experiments. Precise information on the wavelength dependence, the so-called action spectrum, was not available until recently; erythemal or mutagenic action spectra have been used as substitutes. However, experimental data on skin tumors induced in hairless mice (Skh:HR1) with various polychromatic sources have been building up. Our group has found that none of the substitute action spectra yield a statistically acceptable description of our data, and we have, therefore, derived a new action spectrum, dubbed the SCUP action spectrum (SCUP stands for Skin Cancer Utrecht-Philadelphia, because the action spectrum also fits experimental data from the former Skin and Cancer Hospital in Philadelphia). The SCUP action spectrum has a maximum at 293 nm, and in the UVA region above 340 nm the relative carcinogenicity per J/m2 drops to about 10-4 of this maximum.

The effects of an ozone depletion on solar UV doses weighted with these different action spectra are compared: the erythemal and SCUP weighted dose come out as least sensitive with a 1.3% and 1.4% increase, respectively, for every 1% decrease in ozone.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berg RJW, de Gruijl FR, van der Leun JC (1993) Interaction between ultraviolet A and ultraviolet B radiations in skin cancer induction in hairless mice. Cancer Res 53:4212–4217

    PubMed  CAS  Google Scholar 

  • Cole CA, Forbes PD, Davies RE (1986) An action spectrum for photocarcinogenesis. Photochem Photobiol 43:275–284

    Article  PubMed  CAS  Google Scholar 

  • de Gruijl FR, van der Leun JC (1993) Influence of ozone depletion on the incidence of skin cancer, quantitative prediction. In: Young AR, Björn LO, Moan J, Nultsch W (eds) Environmental UV photobiology. Plenum, New York, pp 89–112

    Google Scholar 

  • de Gruijl FR, van der Meer JB, van der Leun JC (1983) Dose-time dependency of tumor formation by chronic UV exposure. Photochem Photobiol 37:53–62

    Article  PubMed  Google Scholar 

  • de Gruijl FR, Sterenborg HJCM, Forbes PD, Davies RE, Cole C, Keifkens G, Van Weelden H, Slaper H, van der Leun JC (1993) Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice. Cancer Res 53:53–60

    PubMed  Google Scholar 

  • de Gruijl FR, van der Leun JC (1994) Estimate of the wavelength dependency of ultraviolet carcinogenesis in humans and its relevance to the risk assessment of a stratospheric ozone depletion. Health Phys 67:317–323

    Google Scholar 

  • Forbes PD, Davies RE, Urbach F, Berger DS, Cole CA (1982) Simulated stratospheric ozone depletion and increased ultraviolet radiation: effects on photocarcinogenesis in hairless mice. Cancer Res 42:2796–2803

    PubMed  CAS  Google Scholar 

  • Kelfkens G, De Gruijl FR, van der Leun JC (1990) Ozone depletion and increase in annual carcinogenic ultraviolet dose. Photochem Photobiol 52:819–823

    Article  PubMed  CAS  Google Scholar 

  • Kelfkens G, de Gruijl FR, van der Leun JC (1991a) Tumourigenesis by short-wave ultraviolet-A: papillomas versus squamous cell carcinomas. Carcinogenesis 12:1377–1382

    Article  PubMed  CAS  Google Scholar 

  • Kelfkens G, van Weelden H, de Gruijl FR, van der Leun JC (1991b) The influence of dose rate on ultaviolet tumorigenesis. J Photochem Photobiol B 10:41–50

    Article  CAS  Google Scholar 

  • McKinlay AF, Diffey BL (1987) A reference action spectrum for ultraviolet induced erythema in human skin. In: Passchier WF, Bosnjakovic BFM (eds) Human exposure to ultraviolet radiation: risks and regulations. Elsevier Science, Amsterdam, pp 83–87

    Google Scholar 

  • Parrish JA, Jaenicke KF, Anderson RR (1982) Erythema and melanogenesis action spectra of normal human skin. Photochem Photobiol 36:187–191

    Article  PubMed  CAS  Google Scholar 

  • Peak MJ, Peak JG, Moehring MP, Webb RB (1984) Ultraviolet action spectra for DNA dimer induction, lethality and mutagenesis in E. coli with emphasis on the UVB region. Photochem Photobiol 40:613–620

    Article  PubMed  CAS  Google Scholar 

  • Roffo AH (1939) Über die physikalische Aetiologie der Krebskrankheit. Strahlentherapie 78:328–350

    Google Scholar 

  • Setlow RB (1974) The wavelengths in sunlight effective in producing cancer: a theoretical analysis. Proc Natl Acad Sci USA 71:3363–3366

    Article  PubMed  CAS  Google Scholar 

  • Slaper H (1987) Skin cancer and UV exposure: investigations on the estimation of risks. PhD thesis, University of Utrecht

    Google Scholar 

  • Sterenborg HJCM, van der Leun JC (1987a) Action spectra for tumorigenesis by ultraviolet radiation. In: Passchier WF, Bosnjakovic BFM (eds) Human exposure to ultraviolet radiation: risks and regulations. Elsevier Science, Amsterdam, pp 173–190

    Google Scholar 

  • Sterenborg HJCM, van der Leun JC (1987b) Change in epidermal transmission due to UV-induced hyperplasia in hairless mice: a first approximation of the action spectrum. Photodermatology 5:71–82

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

de Gruij, F.R. (1995). Action Spectrum for Photocarcinogenesis. In: Garbe, C., Schmitz, S., Orfanos, C.E. (eds) Skin Cancer: Basic Science, Clinical Research and Treatment. Recent Results in Cancer Research, vol 139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78771-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78771-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78773-7

  • Online ISBN: 978-3-642-78771-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics