Skip to main content

Signal Integration in the Axon Tree due to Branch Point Filtering Action

  • Conference paper
Cellular Mechanisms of Sensory Processing

Part of the book series: NATO ASI Series ((ASIH,volume 79))

  • 129 Accesses

Abstract

The often extravagant branching of axons into numerous collateral and even more numerous terminal branches is one of the most distinctive morphological features of neurons. It is not surprising then, that the possibility of signal integration in the axon tree, i.e., one or another form of filtering action, which may degrade, enrich or focus the neural signal as it propagates through the axon tree, has been suggested since the early days of analytical neurophysiologies research.1 In fact, evidence for filtering action at branch points of dorsal column fibers and at intramuscular branch points of phrenic motor neuron axons was soon forthcoming.14,15,41 Subsequently however, very little addition information on the nature and frequency of occurrence of branch point filtering action in vertebrate neurons has been obtained, due no doubt in large part to the practical difficulties of monitoring activity in the parent and daughter branches of their small diameter, relatively inaccessible axons. On the other hand, convincing evidence for such action at axon branch points of invertebrate neurons, as well as the development of a thorough mathematical understanding of some of the basic mechanisms accounting for this phenomenon, became available for invertebrate nerve cells.7,8,26,27,45

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BARRON, D. H. and MATTHEWS, B. H. C. (1935) Intermittent conduction in the spinal cord. J. Physiol. 85, 73–103.

    PubMed  CAS  Google Scholar 

  2. CAMERON, A. A., LEAH, J. D. and SNOW, P. J. (1986) The electrophysiological and morphological characteristics of feline dorsal root ganglion cells. Brain Res. 362, 1–6.

    Article  PubMed  CAS  Google Scholar 

  3. Campbell, D. T. (1992) Large and small vertebrate neurons express different Na and K channel subtypes. Proc. Natl. Acad. Sci. U.S.A. 89, 9569–9573.

    Article  PubMed  CAS  Google Scholar 

  4. Chung, S. H., Raymond, S. A. and Lettvin, J. Y. (1970) Multiple meaning in single visual units. Brain Behav. Evol. 3, 72–101.

    Article  PubMed  CAS  Google Scholar 

  5. Deschenes, M. and Landry, P. (1980) Axonal branch diameter and spacing of nodes in the terminal arborization of identified thalamic and cortical neurons. Brain Res. 191, 538–544.

    Article  PubMed  CAS  Google Scholar 

  6. Dun, F. T. (1955) The delay and blockage of sensory impulses in the dorsal root ganglion. J. Physiol. 127, 252–264.

    PubMed  CAS  Google Scholar 

  7. Goldstein, S. S. and Rall, W. (1974) Changes in action potential shape and velocity for changing core conductor geometry. Biophy. J. 14, 731–757.

    Article  CAS  Google Scholar 

  8. Grossman, Y., Spira, M. E. and Parnas, I. (1973) Differential flow of information into branches of a single axon. Brain Res. 64, 379–386.

    Article  PubMed  CAS  Google Scholar 

  9. Harper, A. A. and Lawson, S. N. (1985) Conduction velocity related to morphological cell type in rat dorsal root ganglion neurones. J. Physiol. 359, 31–46.

    PubMed  CAS  Google Scholar 

  10. Harper, A. A. and Lawson, S. N. (1985) Electrical properties of rat dorsal root ganglion neurones with different peripheral nerve conduction velocities. J. Physiol. 359, 47–63.

    PubMed  CAS  Google Scholar 

  11. Ito, M. and Saiga, M. (1959) The mode of impulse conduction through the spinal ganglion. Jpn. J. Physiol. 9, 33–42.

    Article  PubMed  CAS  Google Scholar 

  12. Ito, M. and Takahashi, I. (1960) Impulse conduction through spinal ganglion. In: Electrical Activity of Single Cells, ed. Y. Katsuki. Tokyo: Ikagu Shoin.

    Google Scholar 

  13. Koerber, H. R., Druzinsky, R. E. and Mendell, L. M. (1988) Properties of somata of spinal dorsal root ganglion cells differ according to peripheral receptor innervated. J. Neurophysiol. 60, 1584–1596.

    PubMed  CAS  Google Scholar 

  14. Krnjevic, K. and Miledi, R. (1958) Motor units in the rat diaphragm. J. Physiol. 140, 427–439.

    PubMed  CAS  Google Scholar 

  15. Krnjevic, K. and Miledi, R. (1958) Failure of neuromuscular propagation in rats. J. Physiol. 140, 440–461.

    PubMed  CAS  Google Scholar 

  16. Lawson, S. N. and Waddell, P. J. (1991) Soma neurofilament immunoreactivity is related to cell size and fibre conduction velocity in rat primary sensory neurons. J. Physiol. 435, 41–63.

    PubMed  CAS  Google Scholar 

  17. Lee, K. H., Chung, K., Chung, J. M. and Coggeshall, R. E. (1986) Correlation of cell body size, axon size and signal conduction velocity for individually labeled dorsal root ganglion cells in the cat. J. Comp. Neurol. 243, 335–346.

    Article  PubMed  CAS  Google Scholar 

  18. Levy, R. A. (1980) Presynaptic control of input to the central nervous system. Can. J. Physiol. Pharmcol. 58, 751–766.

    Article  CAS  Google Scholar 

  19. Liang, Y.-F. and Terashima, S.-I. (1993) Physiological properties and morphological characteristics of cutaneous and mucosal mechanical nociceptive neurons with A-δ peripheral axons in the trigeminal ganglia of crotaline snakes. J. Comp. Neurol. 328, 88–102.

    Article  PubMed  CAS  Google Scholar 

  20. Lieberman, A. R. (1976) Sensory ganglia. In: The Peripheral Nerve, ed. D.N. Landon. New York: Halstead.

    Google Scholar 

  21. Luscher, H. R. (1990) Transmission failure and its relief in the spinal monosynaptic reflex arc. In: The Segmental Motor System, ed. M. D. Binder, and L.M. Mendell. New York: Oxford.

    Google Scholar 

  22. Luscher, H. R., Ruenzel, P. W. and Henneman, E. (1983) Effects of impulse frequency, PTP, and temperature on responses elicited in large populations of motoneruons by impulses in single la fibers. J. Neurophysiol. 50, 1045–1058.

    PubMed  CAS  Google Scholar 

  23. Luscher, H. R. and Shiner, J. S. (1990) Computation of action potential propagation and presynaptic bouton activation in terminal arborizations of different geometries. Biophys. J. 58, 1377–1388.

    Article  PubMed  CAS  Google Scholar 

  24. Luscher, H. R. and Shiner, J. S. (1990) Simulation of action potential propagation in complex terminal arborizations. Biophys. J. 58, 1389–1399.

    Article  PubMed  CAS  Google Scholar 

  25. Paintal, A. S. (1973) Conduction in mammalian nerve fibres. In: New Developments in Electromyography and Clinical Neuophysiology, Vol. 2, ed. J.E. Desmedt. Basel: Karger.

    Google Scholar 

  26. Parnas, I. (1972) Differential block at high frequency of branches of a single axon innervating two muscles. J. Neurophysiol. 35, 903–914.

    PubMed  CAS  Google Scholar 

  27. Parnas, I. and Segev, I. (1979) A mathematical model for conduction of action potentials along bifurcating axons. J. Physiol. 295, 323–343.

    PubMed  CAS  Google Scholar 

  28. Quandt, F. N. and Davis, F. A. (1992) Action potential refractory period in axonal demyelination: a computer simulation. Biol. Cybern. 67, 545–552.

    Article  PubMed  CAS  Google Scholar 

  29. Rasminsky, M. (1973) The effects of temperature on conduction in demyelinated single nerve fibers. Arch. Neurol. 28, 29–47.

    Article  Google Scholar 

  30. Raymond, S. A (1979) Effects of nerve impulses on threshold of frog sciatic nerve fibres. J. Physiol. 290, 273–303.

    PubMed  CAS  Google Scholar 

  31. Rose, R. D., Koerber, H. R., Sedivec, M. J. and Mendell, L. M. (1986) Somal action potential duration differs in identified primary afferents. Neurosci. Lett. 63, 259–264.

    Article  PubMed  CAS  Google Scholar 

  32. Scroggs, R. S. and Fox, A. P. (1991) Distribution of dihydropyridine and ω-conotoxin-sensitive calcium currrents in acutely isolated rat and frog sensory neuron somata: Diameter-dependent L channel expression in frog. J. Neurosci. 11: 1334–1346.

    PubMed  CAS  Google Scholar 

  33. Scroggs, R. S. and Fox, A. P. (1992) Calcium current variation between acutely isolated adult dorsal root ganglion neurons of different size. J. Physiol. 445, 639–658.

    PubMed  CAS  Google Scholar 

  34. Stockbridge, N. (1988) Differential conduction at axonal bifurcations. II. Theoretical basis. J. Neurophysiol. 59, 1286–1294.

    PubMed  CAS  Google Scholar 

  35. Stockbridge, N. (1988) Theoretical response to trains of action potentials of a bifurcating axon with one short daughter branch. Biophys. J. 54, 637–641.

    Article  PubMed  CAS  Google Scholar 

  36. Stockbridge, N. and Stockbridge, L. L. (1988) Differential conduction at axonal bifurcations. I. Effect of electrotonic length. J. Neurophysiol. 59, 1277–1285.

    PubMed  CAS  Google Scholar 

  37. Stoney, S. D. Jr. (1985) Unequal branch point filtering action in different types of dorsal root ganglion neurons of frogs. Neurosci. Lett. 59, 15–20.

    Article  PubMed  Google Scholar 

  38. Stoney, S. D. Jr. (1987) Differential effects of potassium and calcium channel blockers on action potentials of frog dorsal root ganglion neurons. Soc. Neurosci. Abstr. 13, 780.

    Google Scholar 

  39. Stoney, S. D. Jr. (1990) Limitations on impulse conduction at the branch point of afferent axons in frog dorsal root ganglion. Exp. Brain Res. 80, 512–524.

    Article  PubMed  Google Scholar 

  40. Swadlow, H. A., Kocsis, J. D. and Waxman, S. G. (1980) Modulation of impulse conduction along the axonal tree. Ann. Rev. Biophys. Bioeng. 9, 143–179.

    Article  CAS  Google Scholar 

  41. Wall, P. D., Lettvin, J. Y., McCulloch, W. S. and Pitts, W. H. (1956) Factors limiting the maximum impulse transmitting ability of an afferent system of nerve fibers. In: Information Theory. Third London Symposium, ed. C. Cherry. London: Butterworths.

    Google Scholar 

  42. Waxman, S. G. (1975) Integrative properties and design principles of axons. Int. Rev. Neurobiol. 18, 1–40.

    Article  PubMed  CAS  Google Scholar 

  43. Westerfield, M., Joyner, R. W. and Moore, J.W. (1977) Temperature-sensitive conduction failure at axon branch points. J. Neurophysiol. 41, 1–8.

    Google Scholar 

  44. Willis, W. D., Jr. and Coggeshall, R. E. (1991) Sensory Mechanisms of the Spinal Cord, New York: Plenum.

    Google Scholar 

  45. YAU, K.-W. (1976) Receptive fields, geometry and conduction block of sensory neurones in the central nervous system of the leech. J. Physiol. 263, 513–538.

    PubMed  CAS  Google Scholar 

  46. YOSHIDA, S., MATSUDA, Y. and SAMEJIMA, A. (1978) Tetrodotoxin-resistant sodium and calcium components of action potentials in dorsal root ganglion cells of the adult mouse. J. Neurophysiol. 41, 1096–1106.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stoney, S.D. (1994). Signal Integration in the Axon Tree due to Branch Point Filtering Action. In: Urban, L. (eds) Cellular Mechanisms of Sensory Processing. NATO ASI Series, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78762-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78762-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78764-5

  • Online ISBN: 978-3-642-78762-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics