Advertisement

Hyperexcitabilty in the Spinal Dorsal Horn: Cooperation of Neuropeptides and Excitatory Amino Acids

  • Laszlo Urban
  • Stephen W. N. Thompson
  • Istvan Nagy
  • Andy Dray
Conference paper
Part of the NATO ASI Series book series (volume 79)

Abstract

There is a large body of evidence showing that during hyperalgesia both nociceptive specific (NS) and wide dynamic range neurons (WDR) in the spinal dorsal horn become hyperexcitable (see Coggeshall and Willis73). Increased spike discharge and/or sustained membrane depolarization evoked by peripheral stimulation have been used as the measure of this hyperexcitability and this has been described following acute complete Freund’s adjuvant (CFA)-induced arthritis or skin inflammation59,63 and in chemically evoked inflammation.14,27

Keywords

NMDA Receptor Dorsal Horn Excitatory Amino Acid Spinal Dorsal Horn Dorsal Horn Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arancio, O.M., Yoshimura, K.M. and Macdermott, A.B. (1993) The distribution of excitatory amino acid receptors on acutely dissociated dorsal horn neurons from postnatal rats. Neuroscience 52, 159–167.PubMedCrossRefGoogle Scholar
  2. 2.
    Ascher, P. and Nowak, L. (1988) The role of N-methyl-D-aspartate responses of mouse central neurones in culture. J. Physiol. 399, 247–266.PubMedGoogle Scholar
  3. 3.
    Battaglia, G. and Rustioni, A. (1988) Coexistence of glutamate and substance P in dorsal root ganglion neurons of the rat and monkey. J. Comp. Neurol. 277, 302–312.PubMedCrossRefGoogle Scholar
  4. 4.
    Bennett, G.J. (1990) Experimental models of painful peripheral neuropathies. News in Physiol. Sci. 5, 128–133.Google Scholar
  5. 5.
    Biella, G., Panara, C., Pecile, A. and Sotgiu, M.L. (1991) Facilitatory role of calcitonin gene-related peptide (CGRP) on excitation induced by substance P (SP) and noxious stimuli in the rat spinal dorsal horn neurons. An iontophoretic study in vivo. Brain Res. 559, 352–356.PubMedCrossRefGoogle Scholar
  6. 6.
    Brugger, F., Evans, R.H. and Hawkins, N.S. (1990) Effects of N-Methyl-D-Aspartate antagonists and spantide on spinal reflexes and responses to substance P and capsaicin in isolated spinal cord preparations from mouse and rat. Neuroscience 36, 611–622.PubMedCrossRefGoogle Scholar
  7. 7.
    Cerne, R., Jiang, M. and Randic, M. (1992) Cyclic adenosine 3’ 5’ -monophoshate potentiates excitatory amino acid and synaptic responses of rat spinal dorsal horn neurons. Brain Res. 596, 111–123.PubMedCrossRefGoogle Scholar
  8. 8.
    Chen, L. and Mae Huang, L.-Y. (1992) Protein kinase C reduces Mg++ block of NMDA-receptor channels as a mechanism of modulation. Nature 356, 521–523.PubMedCrossRefGoogle Scholar
  9. 9.
    Coderre, T.J. and Melzack, R. (1991) Central neural mediators of secondary hyperalgesia following heat injury in rats: neuropeptides and excitatory amino acids. Neurosci. lett. 131, 71–74.PubMedCrossRefGoogle Scholar
  10. 10.
    Coderre, T.J. and Melzack, R. (1992) The contribution of excitatory amino acids to central sensitization and persistent nociception after formalin- induced tissue injury. J. Neurosci. 12, 3665–36670.PubMedGoogle Scholar
  11. 11.
    De Biasi, S. and Rustioni, A. (1988) Glutamate and substance P coexist in primary afferent terminals in the superficial laminae of spinal cord. Proc. Natl. Acad. Sci. USA 85, 7820–7824.PubMedCrossRefGoogle Scholar
  12. 12.
    De Koninck, Y. and Henry, J.L. (1991) Substance P-mediated slow excitatory postsynaptic potential elicited in dorsal horn neurons in vivo by noxious stimulation. Proc. Natl. Acad. Sci. USA 88, 11344–11348.PubMedCrossRefGoogle Scholar
  13. 13.
    De Koninck, Y., Ribeiro-Da-Silva, A., Henry, J.L. and Cuello, A.C. (1992) Spinal neurons exhibiting a specific nociceptive response receive abundant substance P-containing synaptic contacts. Proc. Natl. Acad. Sci. USA 89, 5073–5077.PubMedCrossRefGoogle Scholar
  14. 14.
    Dickenson, A.H. and Sullivan, A.F. (1987) Evidence for a role of the NMDA receptor in the frequency dependent potentiation of deep dorsal horn nociceptive neurons following C-fibre stimulation. Neuropharm. 26, 1235–1238.CrossRefGoogle Scholar
  15. 15.
    Donnerer, J., Schuigoi, R. and Stein, C. (1992) Increased content and transport of substance P and calcitonin gene-related peptide in sensory nerves innervating inflamed tissue: evidence for a regulatory function of nerve growth factor in vivo. Neuroscience. 49, 693–698.PubMedCrossRefGoogle Scholar
  16. 16.
    Dougherty, P.M. and Willis, W.D. (1991) Enhancement of spinaothalamic neuron responses to chemical and mechanical stimuli following combined microiontophoretic application of N-methyl-D-aspartic acid and substance P Pain 47, 85–93.PubMedCrossRefGoogle Scholar
  17. 17.
    Dubner, R. and Ruda, M.A. (1992) Activity-dependent neuronal plasticity following tissue injury and inflammation. Trends in Neurosci. 15, 96–103.CrossRefGoogle Scholar
  18. 18.
    Duggan, A.W., Hendry, I.A., Morton, C.R., Hutchison, W.D. and Zhao, Z.Q. (1988) Cutaneous stimuli releasing immunoreactive substance P in the dorsal horn of the cat. Brain Res. 451, 261–273.PubMedCrossRefGoogle Scholar
  19. 19.
    Duggan, A.W., Hope, P.J., Jarrott, B., Schaible, H.-G. and Fleetwood-Walker, S.M. (1990) Release, spread and persistence of immunoreactive neurokinin A in the dorsal horn of the cat following cutaneous stimulation. Studies with antibody microprobes. Neuroscience 35, 195–202.PubMedCrossRefGoogle Scholar
  20. 20.
    Fleetwood-Walker, S.M., Mitchell, R., Hope, P.J., El-Yassir, N., Molony, V. and Bladon, C.M. (1990) The involvement of neurokinin receptor subtypes in somatosensory processing in the superficial dorsal horn of the cat. Brain Res. 519, 169–182.PubMedCrossRefGoogle Scholar
  21. 21.
    Franco-Cereceda, A., Henke, H., Lundberg, J.M., Petermann, J.B., HöKfelt, T. and Fischer, J.A. (1987) Calcitonin gene-related peptide (CGRP) in capsaicin-snesitive substance P-immunoreactive sensory neurons in animals and man: distribution and release by capsaicin. Peptides, 8, 399–410.PubMedCrossRefGoogle Scholar
  22. 22.
    Frenk, H., Bossut, D., Urca, G. and Meyer, D.J. (1988) Is substance P a primary afferent neurotransmitter for nociceptive input? Analysis of pain-related behaviours resulting from intrathecal administration of substance P and 6 excitatory compounds. Brain Res. 455, 223–231.PubMedCrossRefGoogle Scholar
  23. 23.
    Gerber, G., Cerne, R. and Randic, M. (1991) Participation of excitatory amino acid receptors in the slow excitatory synaptic transmission in rat spinal dorsal horn. Brain Res. 561, 236–251.PubMedCrossRefGoogle Scholar
  24. 24.
    Gibbs, L.M. and Kendig, J.J. (1992) Substance P and NMDA receptor-mediated slow potentials in neonatal rat spinal cord: age-related changes. Brain Res. 595, 230–241.CrossRefGoogle Scholar
  25. 15.
    Gibson, S.J., Bloom, S.R. and Polak, J.M. (1984) A novel substance P pathway linking the dorsal and ventral horn in the upper lumbar segments of the rat spinal cord. Brain Res. 301, 243–251.PubMedCrossRefGoogle Scholar
  26. 26.
    Hagan, R.M., Beresford, I.J.M., Stables, J., Dupere, J., Stubbs, C.M., Elliott, P.J., Sheldrick, R.L.G., Chollet, A., Kawashima, E., Mcelroy, A.B. and Ward, P. (1993) Characterisation, CNS distribution and function of NK-2 receptors studied using potent NK-2 receptor antagonists. Reg. Peptides 46, 9–20.CrossRefGoogle Scholar
  27. 27.
    Haley, J.E., Sullivan, A.F. and Dickenson, A.H. (1990) Evidence for spinal N-methyl-D-aspartate receptor involvement in prolonged chemical noiciception in the rat. Brain Res. 518, 218–226.PubMedCrossRefGoogle Scholar
  28. 28.
    Handwerker, H.O., Kilo, S. and Reeh, P.W. (1991) Unresponsive afferent nerve fibres in the sural nerve of the rat. J. Physiol. 435, 229–242.PubMedGoogle Scholar
  29. 29.
    Headley, P.M. and Grillner, S. (1991) Excitatory amino acids and synaptic transmission: evidence for a physiological function. Trends Pharmacol. Sci. 11, 205–211.CrossRefGoogle Scholar
  30. 30.
    Hokfelt, T., Kellerth, J.O., Nilsson, C. and Pernow,B. (1975) Experimental immunohistochemical studies on localisation and distribution of substance P in cat primary sensory neurons. Brain Res. 100, 235–252.PubMedCrossRefGoogle Scholar
  31. 31.
    Hokfelt, T., Ljungdahl, A., Terenius, L., Elde, R. and Nilsson, G. (1977) Immunohistochemical analysis of peptide pathways possibly related to pain and analgesia: enkephalin and substance P. Proc. Natl. Acad. Sci. USA 74, 3081–3085.PubMedCrossRefGoogle Scholar
  32. 32.
    Hua, X.-Y., Saria, A., Gamse, R., Theodorsson-Norheim, E., Brodin, E. and Lundberg, J. (1986) Capsaicin induced release of multiple tachykinins (substance P, neurokinin-A and eledoisin-like material) from guinea-pig spinal cord and ureter. Neuroscience 19, 313–319.PubMedCrossRefGoogle Scholar
  33. 33.
    Jeftinija, S., Jeftinija, K., Liu, F., Skilling, S.R., Smullin, D.H. and Larson, A.A. (1991) Excitatory amino acids are released from rat primary afferent neurons in vitro. Neurosci. lett. 125, 191–194.PubMedCrossRefGoogle Scholar
  34. 34.
    Jeftinija, S., Kojic, L., Chen, T.-H. and Urban. L. (1992) Analysis of primary afferent input to rat dorsal horn. Soc. Neurosci. Abstr. 18.Google Scholar
  35. 35.
    Kanazawa, I., Ogawa, T., Kimura, S. and Munekata, E. (1984) Regional distribution of substance P, Neurokinin a and neurokinin p in rat central nervous system. Neurosci. Res. 2, 111–120.PubMedCrossRefGoogle Scholar
  36. 36.
    Kangraga, I. and Randic, M. (1990) Tachykinins and calcitonin gene-related peptide enhance release of endogenous glutamate and aspartate from the rat spinal dorsal horn slice. J. Neurosci. 10, 2026–2038.Google Scholar
  37. 37.
    Kantner, R.M., Goldstein, B.D. and Kyrby, M.L. (1986) Regulatory mechanisms for substance P in the dorsal horn during a nociceptive stimulus: Axoplasmic transport vs electrical activity. Brain Res. 385, 282–290.PubMedCrossRefGoogle Scholar
  38. 38.
    King, A.E., Thompson, S.W.N., Urban, L. and Woolf, C.J. (1988) An intracellular analysis of amino acid induced excitations of deep dorsal horn neurons in the rat spinal cord slice. Neurosci. lett. 89, 286–292.PubMedCrossRefGoogle Scholar
  39. 39.
    Kiyama, H., Maeno, H. and Tohyyama, M. (1993) Substance P receptors (NK-1) in the central nervous system: possible functions from a morphological aspect. Regul. Pept. 46, 114–123.PubMedCrossRefGoogle Scholar
  40. 40.
    Kuraishi, Y., Hirota, N., Sato, Y., Hanashima, N., Takagi, H. and Satoh, M. (1989) Stimulus specificity of peripherally evoked substance P release from the rabbit dorsal horn in situ. Neuroscience 30, 241–250.PubMedCrossRefGoogle Scholar
  41. 41.
    Lang, E., Novak, A., Reeh, W. and Handwerker, H.O. (1990) Chemosensitivity of fine afferents from rat skin in vitro. J. Neurophysiol. 63, 887–901.PubMedGoogle Scholar
  42. 42.
    Larson, A.A., and Sun, X. (1992) Amino terminus of substance P potentiates kainic acid-induced activity in the mouse spinal cord. J. Neurosci. 12, 4905–4910.PubMedGoogle Scholar
  43. 43.
    Marlier, L., Poulat, P., Rajaofetra, N. and Privat, A. (1991) Modifications of serotonin-, substance P- and calcitonin gene-related peptide-like immunoreactivities in the dorsal horn of the spinal cord of arthritc rats: a quantitative immunocytochemical study. Exp. Brain Res. 85, 482–490.PubMedCrossRefGoogle Scholar
  44. 44.
    Martin, F.C., Anton, P.A., Gornbein, J.A., Shanahan, F. and Merrill,J.E. (1993) Production of interleukin-1 by microglia in response to substance P: role for a non-classical NK-1 receptor. J. Neuroimmunol. 42, 53–60.PubMedCrossRefGoogle Scholar
  45. 45.
    Maurset, A.M., Skoglund, R.A. Hustveit, O. and Oye, I. (1989) Comparison of ketamine and pethidine in experimental and postoperative pain. Pain 36, 37–41.PubMedCrossRefGoogle Scholar
  46. 46.
    Mendell, L. (1966) Physiological properties of nonmyelinated fiber projection to the spinal cord. Exp. Neurol. 16, 316–332.PubMedCrossRefGoogle Scholar
  47. 47.
    Mitchell, J.J. and Anderson, K.J. (1991) Quantitative autoradiographic analysis of excitatory amino acid receptors in the spinal cord. Neurosci. lett. 124, 269–272.PubMedCrossRefGoogle Scholar
  48. 48.
    Mjellem-Joly, N., Lund, A., Berge, O.-G. and Hole, K. (1991) Potentiation of a behavioural response in mice by spinal coadministration of substance P and excitatory amino acid agonists. Neurosci. Lett. 133, 121–124.PubMedCrossRefGoogle Scholar
  49. 49.
    Mochly-Rosen, D., Basbaum, A.I. and Koshland, D.E. Jr. (1987) Distinct cellular and regional localization of immunereactive protein kinase C in rat brain. Proc. Natl. Acad. Sci. USA 84, 4660–4664.PubMedCrossRefGoogle Scholar
  50. 50.
    Monaghan, D.T. and Cotman, C.W. (1985) Distribution of N-Methyl-D-aspartate-sensitve L-[3H]Glutamate-binding sites in rat brain. J. Neurosci. 5, 2909–2919.PubMedGoogle Scholar
  51. 51.
    Murase, K., Ryu, P.D. and Randic, M. (1989) Excitatory and inhibitory amino acids and peptide-induced responses in acutely isolated rat spinal dorsal horn neurons. Neurosci. lett. 103, 56–63.PubMedCrossRefGoogle Scholar
  52. 52.
    Nagy, J.I. and Hunt, S.P. (1983) The termination of primary afferents within the rat dorsal horn: Evidence for rearrangement following capsaicin treatment. J. Comp Neurol. 218, 145–158.PubMedCrossRefGoogle Scholar
  53. 53.
    Nagy, I., Winter, J. and Woolf, C.J. (1993) Distribution of neurons expressing different excitatory amino acid receptors in the rat isolated spinal cord. J. Physiol. 459, P162.Google Scholar
  54. 54.
    Nagy, I., Maggi, C.A., Dray, A., Woolf, C.J. and Urban, L. (1993) The role of neurokinin and N-Methyl-D-Aspartate receptors in synaptic transmission from capsaicin-sensitive primary afferents in the rat spinal cord in vitro. Neuroscience 52, 1029–1037.PubMedCrossRefGoogle Scholar
  55. 55.
    Otsuka, M. and Yanagisawa, M. (1988) Effect of a tachykinin antagonist on a nociceptive reflex in the isolated spinal cord tail preparation of the newborn rat. J. Physiol. (Lond.) 395, 255–270.Google Scholar
  56. 56.
    Pruss, R.M., Akeson, R.L., Racke, M.M. and Wilburn, J.L. (1991) Agonist-activated cobalt uptake identifies divalent cation-permeable kainate receptors on neurons and glial cells. Neuron 7, 5509–518.CrossRefGoogle Scholar
  57. 57.
    Randic, M., Jeftinija, S., Urban, L., Raspantini, C. and Folkers, K. (1988) Effects of substance P analogues on spinal dorsal horn neurons. Peptides 9, 651–660.PubMedCrossRefGoogle Scholar
  58. 58.
    Randic, M., Ryu, P.D. and Urban, L. (1986) Effects of monoclonal and polyclonal antibodies to substance P on slow excitatory transmission in the rat spinal dorsal horn. Brain Res. 383, 15–27.PubMedCrossRefGoogle Scholar
  59. 59.
    Ren, K., Hylden, J.L.K., Williams, G.M., Ruda, M.A. and Dubner, R. (1993) The effects of a non-competitive NMDA receptor antagonist, MK- 801, on behavioral hyperalgesia and dorsal horn neuronal activity with unilateral inflammation. Pain 50, 331–344.CrossRefGoogle Scholar
  60. 60.
    Rusin, K.I., Ryu, P.D. and Randic, M. (1992) Modulation of excitatory amino acid responses in rat dorsal horn neurons by tachykinins. J. Neurophysiol. 68, 265–286.PubMedGoogle Scholar
  61. 61.
    Schafer, M. K.-H., Nohr, D., Krause, J.E. and Weihe, E. (1993) Selective upregulation in unilateral peripheral inflammation. Neuropeptides 24 (4), P83.CrossRefGoogle Scholar
  62. 62.
    Schaible, H.-G., Jarrott, B., Hope, P.J. and Duggan, A.W. (1990) Release of immunoreactive substance P in the spinal cord during development of acute arthritis in the knee joint of the cat: a study with antibody microprobes. Brain Res. 529, 214–223.PubMedCrossRefGoogle Scholar
  63. 63.
    Schaible, H.-G., Grubb, B.D., Neugebauer, V. and Oppmann, M. (1991) The effects of NMDA antagonists on neuronal activity in cat spinal cord evoked by acute inflammatiion in the knee joint. Eur. J. Neurosci. 3, 981–991.PubMedCrossRefGoogle Scholar
  64. 64.
    Schaible, H.-G., Hope, P.J., Lang, C.W. and Duggan, A.W. (1992) Calcitonin gene-related peptide causes intraspinal spreading of substance P released by peripheral stimulation. Eur. J. Neurosci. 4, 750–757.PubMedCrossRefGoogle Scholar
  65. 65.
    Smullin, D.H., Skilling, R. and Larson A.A. (1990) Interactions between substance P, calcitonin gene-related peptide, taurine and excitatory amino acids in the spinal cord. Pain 42, 93–101.PubMedCrossRefGoogle Scholar
  66. 66.
    Thompson, S.W.N., King, A.E. and Woolf, C.J. (1990) Activity-dependent changes in rat ventral horn neurons in vitro; summation of prolonged afferent evoked postsynaptic depolarizations produce a D-2-amino-5- phosphonovaleric acid sensitive windup. Eur. J. Neurosci. 2, 638–649.PubMedCrossRefGoogle Scholar
  67. 67.
    Thompson, S.W.N., Woolf, C.J. and Sivilotti, L.G. (1993) Small-caliber afferent inputs produce a heterosynaptic facilitation of the synaptic responses evoked by primary afferent A-fibres in the neonatal rat spinal cord in vitro. J. Neurophysiol. 69, 1–13.Google Scholar
  68. 68.
    Thompson, S.W.N., Urban, L. and Dray, A. (1993) NMDA and tachykinin receptor-mediated contributions to the C-fibre-evoked response in the neonatal rat spinal cord in vitro are enhanced following peripheral inflammation. Brit. J. Pharmacol. 108, 22 P.Google Scholar
  69. 69.
    Urban, L. and Randic, M. (1984) Slow excitatory transmission in rat dorsal horn: possible mediation by peptides. Brain Res. 290, 336–341.PubMedCrossRefGoogle Scholar
  70. 70.
    Urban, L. and Dray, A. (1992) Synaptic activation of dorsal horn neurons by selective C-fibre excitation with capsaicin in the mouse spinal cord in vitro. Neuroscience 47, 693–702.PubMedCrossRefGoogle Scholar
  71. 71.
    Urban, Naeem, S. and Dray, A. (1993) Effects of neurokinins on excitatory amino acid-induced activation in the neonatal rat spinal cord in vitro. Br. J. Pharmacol. 108, 23 P.Google Scholar
  72. 72.
    Valtschanoff, J.G., Weinberg, R.J. and Rustioni, A. (1992) Peripheral injury and anterograde transport of wheat germ agglutin-horse radish peroxidase to the spinal cord. Neuroscience 50, 685–696.PubMedCrossRefGoogle Scholar
  73. 73.
    Willis, W.D. Jr. and Coggeshall, R.E. (1991) Sensory mechanisms of the spinal cord. Plenum Press. (Second Ed.)Google Scholar
  74. 74.
    Woodley, S.J. and Kendig, J.J. (1991) Substance P and NMDA receptors mediates a slow nociceptive ventral root potential in the neonatal rat spinal cord. Brain Res. 559, 17–21.PubMedCrossRefGoogle Scholar
  75. 75.
    Woolf, C.J. (1983) Evidence for a central component of post-injury pain hypersensitivitty. Nature 306, 686–688.PubMedCrossRefGoogle Scholar
  76. 76.
    Woolf, C.J., Shortland, P. and Coggeshall, R.E. (1993) Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature 355, 75–78.CrossRefGoogle Scholar
  77. 77.
    Woolf, C.J. and Thompson, S.W.N. (1991) The induction and maintenance of central sensitization is dependent upon N-Methyl-D-Aspartate acid receptor activation; implications for the treatment of post-injury pain hpersensitivity states. Pain 44, 293–299.PubMedCrossRefGoogle Scholar
  78. 78.
    Xu, X.-J., Maggi, C.A. and Wiesenfeld-Hallin, Z. (1991) On the role of NK-2 tachykinin receptors in the mediation of spinal reflex excitability in the rat. Neuroscience, 44, 483–490.PubMedCrossRefGoogle Scholar
  79. 79.
    Xu, X.-J., Dalsgaard, C.J. and Wiesenfeld-Hallin, Z. (1992) Spinal substance P and N-Methyl-D-Aspartate receptors are coactivated in the induction of central sensitzation of the nociceptive flexor reflex. Neuroscience 51, 641–648.PubMedCrossRefGoogle Scholar
  80. 80.
    Yaksh, T.L., Jessell, T.M., Gamse, R., Mudge, A.W. and Leeman, S.F. (1980) Intrathecal morphine inhibits substance P release from mammalian spinal cord in vivo. Nature 286, 155–156.PubMedCrossRefGoogle Scholar
  81. 81.
    Yanagisawa, M., Otsuka, M., Konishi, S., Akagi, H., Folkers, K. and Rostell, S. (1982) A substance P antagonist inhibits a slow reflex response in the spinal cord of the newborn rat. Acta. Physiol. Scand. 116, 109–112.PubMedCrossRefGoogle Scholar
  82. 82.
    Yashpal, K., Dam, T. and Quirion, R. (1990) Quantitative autoradioigraphic distribution of multiple neurokinin binding sites in rat spinal cord. Brain Res. 506, 259–266.PubMedCrossRefGoogle Scholar
  83. 83.
    Yashpal, K., Radhakrishnan, V. and Henry, J.L. (1991) NMDA receptor antagonist blocks the facilitation of the tail flick reflex in the rat induced by intrathecal administration of substance P and by noxious cutaneous stimulation. Neurosci. Lett. 128, 269–272.PubMedCrossRefGoogle Scholar
  84. 84.
    Yoshimura, M. and Jessell, T. (1990) Amino acid-mediated EPSPs at primary afferent synapses with substantia gelatinosa neurones in the rat spinal cord. J. Physiol. 430, 315–335.PubMedGoogle Scholar
  85. 85.
    Yoshimura, M. and Jessell, T.M. (1989) Primary afferent evoked synaptic responses and slow potential generation in rat substantia geltinosa neurons in vitro. J. Neurophysiol. 62, 96–108.PubMedGoogle Scholar
  86. 86.
    Yoshimura, M., Shimizu, T., Yajiri, Y., Inokuchi, H. and Nishi, S. (1993) Primary afferent-evoked slow EPSPs and responses to substance P of dorsal horn neurons in the adult rat spinal cord slices. Reg. Peptides 46, 407–409.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Laszlo Urban
    • 1
  • Stephen W. N. Thompson
    • 1
  • Istvan Nagy
    • 1
    • 2
  • Andy Dray
    • 1
  1. 1.Department of PharmacologySandoz Institute for Medical ResearchLondonUK
  2. 2.Dept. Anat.Univ. Med. School of DebrecenHungary

Personalised recommendations