Altered Functions of Neuropeptides and Nitric Oxide in Somatosensory Afferents and Spinal Cord After Peripheral Nerve Lesions in the Rat

  • Zsuzsanna Wiesenfeld-Hallin
  • Xu Xiao-Jun
Conference paper
Part of the NATO ASI Series book series (volume 79)


Peripheral nerve injury causes complex physiological and biochemical changes in sensory neurons and the spinal cord, including dramatic alteration of peptide synthesis. Thus, a few days after axotomy of the peripheral branch of sensory nerves, there is a significant decrease in the number of substance P (SP) and somatostatin (SOM) containing dorsal root ganglion (DRG) cells and SP and SOM content in afferent terminals in the spinal cord,8,32,46 which was recently demonstrated to be due to decreased synthesis in sensory neurons.41 Similar, but less profound and slower reduction of calcitonin gene-related peptide (CGRP) level has also been reported52. In contrast, the levels of vasoactive intestinal peptide (VIP), galanin (GAL), neuropeptide Y (NPY) and cholecystokinin (CCK) are dramatically increased in sensory neurons 26,36,46,48,54,73 which is also due to upregulated peptide synthesis. 41,42,48,51


Nitric Oxide Conditioning Stimulus Dorsal Root Ganglion Neuropathic Pain Sciatic Nerve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawa,L S.G. and Evans, R.H. (1986) The primary afferent depolarizing action of kainate in the rat. Br. J. Pharmacol. 87, 345–355.PubMedGoogle Scholar
  2. 2.
    Aimi, Y., Fujimura, S.R., Vincent, S.R. and Kimura, H. (1991) Localization of NADPH-diaphorase-containing neurons in sensory ganglia of the rat. J. Comp. Neurol. 306, 382–392.PubMedCrossRefGoogle Scholar
  3. 3.
    Amir, R. and Devor, M. (1992) Axonal cross-excitation in nerve-end neuromas: Comparison of A- and C-fibers. J. Neurophysiol. 68, 1160–1166.PubMedGoogle Scholar
  4. 4.
    Anderson, L.S., Black, R.G., Abraham, J. and Ward, A.A. (1971) Neuronal hyperactivity in experimental trigeminal deafferentation. J. Neurosurg. 35, 444–452.PubMedCrossRefGoogle Scholar
  5. 5.
    ArnéR, S. and Meyerson, B. (1988) Lack of analgesic effect of opioids on neuropathic and idiopathic forms of pain. Pain 33, 11–23.PubMedCrossRefGoogle Scholar
  6. 6.
    Baber, N.S., Dourish, C.T. and Hill, D.R. (1989) The role of CCK, caerulein, and CCK antagonists in nociception. Pain 39, 307–328.PubMedCrossRefGoogle Scholar
  7. 7.
    Baccaglini, P.I. and Hogan, P.G. (1983) Some rat sensory neurons in culture express characteristics of differentiated pain sensory cells. Proc. Natl. Acad. Sci. U.S.A. 80, 594–598.PubMedCrossRefGoogle Scholar
  8. 8.
    Barbut, D., Polak, J.M. and Wall, P.D. (1981) Substance P in spinal cord dorsal horn decreases following peripheral nerve injury. Brain Res. 205, 289–298.PubMedCrossRefGoogle Scholar
  9. 9.
    Bartfai, T., Fisone, G. and Langel, U. (1992) Galanin and galanin antagonists: molecular and biochemical perspectives. Trends Pharmacol. Sci. 13, 312–317.PubMedCrossRefGoogle Scholar
  10. 10.
    Bredt, D.S. and Snyder, S.H. (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. U.S.A. 87, 682–285PubMedCrossRefGoogle Scholar
  11. 11.
    Bredt, D.S., and Synder, S.H. (1992) Nitric oxide, a novel neuronal messenger. Neuron 8, 3–11.PubMedCrossRefGoogle Scholar
  12. 12.
    Burchiel, K.J. (1984) Spontaneous impulse generation in normal and denervated dorsal root ganglia: Sensitivity to alpha-adrenergic stimulation and hypoxia. Exp. Neurol. 85, 257–272.PubMedCrossRefGoogle Scholar
  13. 13.
    Coderre, T.J., Grimes, R.W. and Melzack, R. (1986) Deafferentation and chronic pain in animals: an evaluation of evidence suggesting autotomy is related to pain. Pain 26, 61–84.PubMedCrossRefGoogle Scholar
  14. 14.
    Devor, M. and Wall, P.D. (1981) Plasticity in the spinal cord sensory map following peripheral nerve injury in rats. J. Neurosci. 1, 679–684.PubMedGoogle Scholar
  15. 15.
    Devor, M. and Wall, P.D. (1990) Cross-excitation in dorsal root ganglia of nerve-injured and intact rats. J. Neurophysiol. 64, 1733–1746.PubMedGoogle Scholar
  16. 16.
    Dunlap, K. and Fischbach, G.D. (1978) Neurotransmitters decrease the calcium conductance of sensory neurone action potentials. Nature 276, 839–839.CrossRefGoogle Scholar
  17. 17.
    Dourish, C.T., O’Neill, M.F., Coughlan, J., Kitchener, S.J., Hawley, D. and Iversen, S.D. (1990) The selective CCK-B receptor antagonist L-365,260 enhances morphine analgesia and prevents morphine tolerance in the rat. Eur. J. Pharmacol. 176, 35–44.PubMedCrossRefGoogle Scholar
  18. 18.
    Faris, P.L., Komisaruk, B.R., Watkins, L.R. and Mayer, D.J. (1983) Evidence for the neuropeptide cholecystokinin as an antagonist of opiate analgesia. Science 219, 310–312.PubMedCrossRefGoogle Scholar
  19. 19.
    Garthwaite, J. (1991) Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci. 14, 60–67PubMedCrossRefGoogle Scholar
  20. 20.
    Garthwaite, J., Charles, S.L. and Chess-Williams, R. (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggest a role as intracellular messenger in the brain. Nature 326, 385–387.CrossRefGoogle Scholar
  21. 21.
    Govrin-Lippmann, R. and Devor, M. (1978) Ongoing activity in severed nerves: Source and variation with time. Brain Res. 159, 406–410PubMedCrossRefGoogle Scholar
  22. 22.
    Haley, J.E., Dickenson, A.H., and Schachter, M. (1992) Electrophysiological evidence for a role of nitric oxide in prolonged chemical nociception in the rat. Neuroscience 31, 251–258Google Scholar
  23. 23.
    HöKfelt, T., Bartfai, T., Jacobowitz, D. and Ottoson, D. (eds) (1991) Galanin, A New Multifunctional Peptide in the Neuroendocrine System, Wenner-Gren Center Internaitonal Symposium Series, Vol. 58, Macmillan Press, Basingstoke.Google Scholar
  24. 24.
    HöKfelt, T., Herrera-Marschitz, M., Seroogy, K., Ju G., Staines, W.A., Holets, V., Schalling, M., Ungerstedt, U., Post, C., Rehfeld, J.F., Frey, P., Fischer, J., Dockray, G., Hamaoka, T., Walsh, J.H. and Goldstein M. (1988) Immunohistochemical studies on cholecystokinin (CCK)-immunoreactive neurons in the rat using sequence specific antisera and with specific reference to the caudate nucleus and primary sensory neurons. J. Chem. Neuroanat. 1, 11–52.PubMedGoogle Scholar
  25. 25.
    HöKfelt, T., Verge, V.M.K., Wiesenfeld-Hallin, Z. and Eriksson, M. (1991) Upregulation of vasoactive intestinal peptide in substance P expressing primary sensory neurons after injury. Soc. Neurosci. Abstr. 17, 439.Google Scholar
  26. 26.
    HöKfelt, T., Wiesenfeld-Hallin, Z., Villar, M.J. And Melander, T. (1987) Increase of galanin-like immunoreactivity in rat dorsal root ganglion cells after peripheral axotomy. Neurosci. Lett. 83, 217–220.PubMedCrossRefGoogle Scholar
  27. 27.
    Holz, G.G., Iv, Dunlap, K. and Kream, R.M. (1988) Characterization of the electrically evoked release of substance P from dorsal root ganglion neurons: methods and dihydropyridine sensitivity. J. Neurosci. 8, 463–471.PubMedGoogle Scholar
  28. 28.
    Huettner, J.E. (1990) Glutamate receptor channels in rat DRG neurons: activation by kainate and quisqualate and blockade of desensitization by Con A. Neuron 5, 255–266.PubMedCrossRefGoogle Scholar
  29. 29.
    Hughes, J., Boden, P., Costall, B., Domeney, A., Kelly, E., Horwell, D.C., Hunter, J.C., Pinnock, R.D. and Woodruff, G.N. (1990) Development of a class of selective cholecystokinin type B receptor antagonists having potent anxiolytic activity. Proc. Natl. Acad. Sci. U.S.A. 87, 6728–6732.PubMedCrossRefGoogle Scholar
  30. 30.
    Hylden, J.L.K., Nahin, R.L. and Dubner, R. (1987) Altered responses of nociceptive cat lamina I spinal dorsal horn neurons after chronic sciatic neuroma formation. Brain Res. 411, 341–350.PubMedCrossRefGoogle Scholar
  31. 31.
    Itoh, S., Katsuura, G. and Maeda, Y. (1982) Caerulein and cholecystokinin suppress b-endorphin-induced analgesia in the rat. Eur. J. Pharmacol. 80, 421–425.PubMedCrossRefGoogle Scholar
  32. 32.
    Jessell, T., Tsunoo, A., Kanazawa, I. and Otsuka, M. (1979) Substance P: depletion in the dorsal horn of rat spinal cord after section of the peripheral processes of primary sensory neurons. Brain Res., 168, 247–259.PubMedCrossRefGoogle Scholar
  33. 33.
    Lee, J.-H., Wilcox, G.L. and Beitz, A.J. (1992) Nitric oxide mediates Fos expression in the spinal cord induced by mechanical noxious stimulation. Neuroreport 3, 841–844.PubMedCrossRefGoogle Scholar
  34. 34.
    Lombard, M.-C. and Besson, J.-M. (1989) Attemps to gauge the relative importance of pre- and postsynaptic effects of morphine on the transmission of noxious messages in the dorsal horn of the rat spinal cord. Pain 37, 335–346.PubMedCrossRefGoogle Scholar
  35. 35.
    Magistretti, P.J., Morrison, J.H., Shoemaker, W.J., Sapin, V. and Bloom, F.E. (1981) Vasoactive intestinal polypeptide induced glycogenosis in mouse cortical slices: A possible regulatory mechanism for the local control of energy metabolism. Proc. Natl. Acad; Sci. U.S.A. 78, 6535–6539.PubMedCrossRefGoogle Scholar
  36. 36.
    Mcgregor, G.P., Gibson, S.J., Sabate, I.M., Blank, M.A., Christofides, N.D., Wall, P.D., Polak, J.M. and Bloom, S.R. (1984) Effect of peripheral nerve section and nerve crush on spinal cord neuropeptides in the rat: increased VIP and PHI in the dorsal horn. Neuroscience 13, 207–216.PubMedCrossRefGoogle Scholar
  37. 37.
    Meller, S.T., Dykstra, C. and Gebhart, G.F. (1992) Production of endogenous nitric oxide and activation of soluble guanylate cyclase are required for N-methyl-D-aspartate-produced facilitation of the nociceptive tail-flick reflex. Eur. J. Pharmacol. 214, 93–96.PubMedCrossRefGoogle Scholar
  38. 38.
    Meller S.T., Pechman, P.S., Gebhart, G.F. and Maves, T.J. (1992) Nitric oxide mediates the thermal hyperalgesia produced in a model of neuropathic pain in the rat. Neuroscience 50, 7–10.PubMedCrossRefGoogle Scholar
  39. 39.
    Moncada, S. (1992) The L-arginine:nitric oxide pathway. The 1991 von Euler Lecture. Acta Physiol. Scand. 145, 201–227.PubMedCrossRefGoogle Scholar
  40. 40.
    Morris,, R., Southam, E., Braid, D.J. and Garthwaite, J. (1992) Nitric oxide may act as a messenger between dorsal root ganglion neurones and their satellite cells. Neurosci. Lett. 137, 29–32.PubMedCrossRefGoogle Scholar
  41. 41.
    Nielsch, U. and Keen, P. (1989) Reciprocal regulation of tachykinin- and vasoactive intestinal peptide-gene expression in rat sensory neurones following cut and crush injury. Brain Res. 481, 25–30.PubMedCrossRefGoogle Scholar
  42. 42.
    Noguchi, K., Senba, E., Morita, Y., Sato, M. and Tohyama M. (1989) Prepro-VIP and preprotachykinin mRNAs in the rat dorsal root ganglion cells following peripheral axotomy. Mol. Brain Res. 6, 327–330.PubMedCrossRefGoogle Scholar
  43. 43.
    Portenoy, R.K., Foley, K.M and Inturrisi, C.E. (1991) The nature of opioid responsiveness and its implications for neuropathic pain: new hypothesis derived from studies of opioid infusions. Pain. 43, 273–286.CrossRefGoogle Scholar
  44. 44.
    Post, C., Alari, L. and HöKfelt, T. (1988) Intrathecal galanin increases the latency in the tail flick and hot plate tests in mouse. Acta Physiol. Scand. 132, 583–584.PubMedCrossRefGoogle Scholar
  45. 45.
    Puke, M.J.C. and Wiesenfeld-Hallin, Z. (1993) The differential effects of morphine and the α2 agonists clonidine and dexmedetomidine on the prevention and treatment of experimental neuropathic pain. Anesth. Analg. (in press).Google Scholar
  46. 46.
    Shehab, S.A.S. and Atkinson, M.E. (1986) Vasoactive intestinal polypeptide (VIP) increases in the spinal cord after peripheral axotomy of the sciatic nerve originates from primary afferent neurons. Brain Res. 372, 37–44.PubMedCrossRefGoogle Scholar
  47. 46a.
    Shigemoto, R., Ohishi, H., Nakanishi, S. and Mizuno, N. (1992) Expression of the mRNA for the rat NMDA receptor (NMDAR1) in the sensory and autonomic ganglion neurons. Neurosci. Lett. 144, 229–232.PubMedCrossRefGoogle Scholar
  48. 47.
    Sunderland S. (1978) Nerves and Nerve Injuries, Churchill-Livingston, London.Google Scholar
  49. 48.
    Verge, V.M.K., Wiesenfeld-Hallin, Z. and HöKfelt, T. (1993) Cholecystokinin in mammalian primary sensory neurons and spinal cord: In situ hybridization studies on rat and monkey spinal ganglia. Eur. J. Neurosci. (in press).Google Scholar
  50. 49.
    Verge V.M.K., Xu, X.-J., Langel, O., HöKfelt, T., Wiesenfeld-Hallin, Z. and Bartfai T. (1993) Evidence for endogenous inhibition of autotomy by galanin in the rat after sciatic nerve section: demonstrated by chronic intrathecal infusion of a high affinity galanin receptor antagonist. Neurosci. Lett. 149, 193 - 197.PubMedCrossRefGoogle Scholar
  51. 50.
    Verge, V.M.K., Xu, Z., Xu, X.-J., WIESENFELD-HALLIN, Z. and HöKFELT, T. (1992) Marked increase in nitric oxide synthase mRNA in rat dorsal root ganglia after peripheral axotomy: In situ hybridization and functional studies. Proc. Natl. Acad. Sci. U.S.A. 89, 11617–11621.PubMedCrossRefGoogle Scholar
  52. 51.
    Villar, M.J., Cortes, R., Theodorsson, E., Wiesenfeld-Hallin, Z., Schalling, M., Fahrenkrug, J., Emson, P.C. and HöKfelt, T. (1989) Neuropeptide expression in rat dorsal root ganglion cells and spinal cord after peripheral nerve injury with special reference to galanin. Neuroscience 33, 587–604.PubMedCrossRefGoogle Scholar
  53. 52.
    Villar, M.J., Wiesenfeld-Hallin, Z., Xu X.-J., Theodorsson, E., Emson, P. and HöKfelt, T. (1991) Further studies on galanin-, substance P-, and CGRP-like immunoreactivities in primary sensory neurons and spinal cord: effects of dorsal rhizotomies and sciatic nerve lesions. Exp. Neurol. 112, 29–39.PubMedCrossRefGoogle Scholar
  54. 53.
    Waelbroeck, M., Robberecht, P., Coy, D.H., Camus, J.C., De Neef, P. and Christophe, J. (1985) Interaction of growth hormone-releasing factor (GRF) and 14 GRF analogs with vasoactive intestinal peptide (VIP) receptors of rat pancreas. Discovery of (N-Ac-Tyr1, D-Phe2)-GRF-(1-29)-NH2 as a VIP antagonist. Endocrinology 116, 2643–2649.PubMedCrossRefGoogle Scholar
  55. 54.
    Wakisaka, S., Kajander, K.C. and Bennett G.J. (1991) Increased neuropeptide Y (NPY)-like immunoreactivity in rat sensory neurons following peripheral axotomy. Neurosci. Lett. 124, 200–203.PubMedCrossRefGoogle Scholar
  56. 55.
    Wall P.D. and Devor, M. (1981) The effect of peripheral nerve injury on dorsal root potentials and on transmission of afferent signals into the spinal cord. Brain Res. 209, 95–111.PubMedCrossRefGoogle Scholar
  57. 56.
    Wall P.D. and Devor M. (1983) Sensory afferent impulse originate from dorsal root ganglia as well as from the periphery in normal and nerve injured rats. Pain 17, 321–339.PubMedCrossRefGoogle Scholar
  58. 57.
    Wall, P.D., Devor, M., Inbal, R., Scadding, J.W., Schonfield D., Seltzer, Z. and Tomkiewicz, M.M. (1979) Autotomy following peripheral nerve lesions: experimental anaesthesia dolorosa. Pain 7, 103–113.PubMedCrossRefGoogle Scholar
  59. 58.
    Wall, P.D. and Gutnick, K. (1974) Ongoing activity in peripheral nerves: the physiology and pharmacology of impluses originating from a neuroma. Exp. Neurol. 43, 580–593.PubMedCrossRefGoogle Scholar
  60. 59.
    Wall, P.D. and Woolf, C.J. (1984) Muscle but not cutaneous C-afferent input produces prolonged increases in the excitability of the flexion reflex in the rat. J. Physiol. 356, 443–458.PubMedGoogle Scholar
  61. 60.
    Wall, P.D. and Woolf, C.J. (1986) The brief and prolonged facilitatory effects of unmyelianted afferent input on the rat spinal cord are independently influenced by peripheral nerve section. Neuroscience 17, 1199–1205.PubMedCrossRefGoogle Scholar
  62. 61.
    Watkins, L.R., Kinscheck, I.B. and Mayer, D.J. (1984) Potentiation of opiate analgesia and apparent reversal of morphine tolerance by proglumide. Science 224, 395–396.PubMedCrossRefGoogle Scholar
  63. 62.
    Wiesenfeld-Hallin, Z. (1984) The effect of intrathecal morphine and natrexone on autotomy in sciatic nerve sectioned rats. Pain 18, 267–278.PubMedCrossRefGoogle Scholar
  64. 63.
    Wiesenfeld-Hallin, Z. (1989) Nerve section alters the interaction between C-fibre activity and intrathecal neuropeptides on the flexor reflex in rat. Brain Res. 489, 129–136.PubMedCrossRefGoogle Scholar
  65. 64.
    Wiesenfeld-Hallin, Z., Bartfai, T. And Hökfelt T,. (1992). Galanin in sensory neurons in the spinal cord. Frontiers Neuroendocrinol. 13, 319–343.Google Scholar
  66. 65.
    Wiesenfeld-Hallin, Z., Villar, M.J. and Hökfelt, T. (1989). The effect of intrathecal galanin and C-fiber stimulation on the flexor reflex in the rat. Brain Res. 486, 205–213.PubMedCrossRefGoogle Scholar
  67. 66.
    Wiesenfeld-Hallin, Z., Xu, X-J., Hakanson, R., Feng, D.M. and Folkers, K. (1990) The specific antagonistic effect of intrathecally injected spantide II on substance P- and C-fiber conditioning stimulation- induced facilitation of the nociceptive flexor reflex in rat. Brain Res. 526, 284–290.PubMedCrossRefGoogle Scholar
  68. 67.
    Wiesenfeld-Hallin, Z., Xu X.-J., HåKanson, R., Feng, D-M. and Folkers, K. (1990) Plasticity of the peptidergic mediation of spinal reflex facilitation. Neurosci. Lett. 116, 293–298.PubMedCrossRefGoogle Scholar
  69. 68.
    Wiesenfeld-Hallin, Z., Xu, X.-J., Hughes, J., Horwell, D.C. and Hökfelt, T. (1990) PD134308, a selective antagonist of cholecystokinin type-B receptor, enhances the analgesic effect of morphine and synergistically interacts with intrathecal galanin to depress spinal nociceptive reflexes. Proc. Natl. Acad. Sci. U.S.A. 87, 7105–7109.PubMedCrossRefGoogle Scholar
  70. 69.
    Wiesenfeld-Hallin, Z., Xu, X.-J., Langel, U., Bedecs, K., HöKfelt, T. and Bartfai, T. (1992). Galanin mediated control of pain: enhanced role after nerve injury. Proc. Natl. Acad. Sci. U.S.A. 89, 3334–3337.PubMedCrossRefGoogle Scholar
  71. 70.
    Wiesenfeld-Hallin, Z., Xu, X.-J., Villar, M.J. and Hökfelt, T. (1989). The effect of intrathecal galanin on the flexor reflex in rat: increased depression after sciatic nerve section. Neurosci. Lett. 105, 149–154.PubMedCrossRefGoogle Scholar
  72. 71.
    Williams, R.G., Dimaline, R., Varro, A., Isetta, A.N., Trizio, D. and Dockray, G.J. (1987) Cholecystokinin octapeptide in rat central nervous system: immunocytochemical studies using a monoclonal antibody that does not react with CGRP. Neurochem. Int. 11, 433–442.PubMedCrossRefGoogle Scholar
  73. 72.
    Xu, X.-J., Dalsgaard, C.-J. and Wiesenfeld-Hallin, Z. (1992) Intrathecal CP-96,345 blocks reflex facilitation induced in rats by substance P and C-fiber-conditioning stimulation. Eur. J. Pharmacol. 216, 337–344.PubMedCrossRefGoogle Scholar
  74. 73.
    Xu, X.-J., Puke, M.J.C., Verge, V.M.K., Wiesenfeld-Hallin, Z. Hughes, J. and Hökfelt T. (1993) Up-regulation of cholecystokinin in primary sensory neurons is associated with morphine insensitivity in experimental neuropathic pain. Neurosci. Lett. 1993. (in press).Google Scholar
  75. 74.
    Xu, X-J. and Wiesenfeld-Hallin, Z. (1991) An analogue of growth hormone releasing factor (GRF), (Ac-Tyr1, D-Phe2)-GRF-(1-29), specifically antagonizes the facilitation of the flexor reflex induced by intrathecal vasoactive intestinal peptide in rat spinal cord. Neuropeptides 18, 129–135.PubMedCrossRefGoogle Scholar
  76. 75.
    Xu, X.-J., Wiesenfeld-Hallin, Z. (1991) The threshold for the depressive effect of intrathecal morphine on the spinal nociceptive flexor reflex is increased during autotomy after sciatic nerve section in rats. Pain 46, 223–229.PubMedCrossRefGoogle Scholar
  77. 76.
    Xu, X.-J., Wiesenfeld-Hallin, Z., Hughes, J., Horwell, D.C. and Hökfelt, T. (1992) CI988, a selective antagonist of cholecystokinin B receptors, prevents morphine tolerance in the rat. Br. J. Pharmacol. 105, 591–596.PubMedGoogle Scholar
  78. 77.
    Xu, X.-J., Wiesenfeld-Hallin, Z., Villar, M.J., Fahrenkrug, J. and Hökfelt, T. (1990) On the role of galanin, substance P and other neuropeptides in primary sensory neurons of rat: studies on spinal reflex excitability and peripheral axotomy. Eur. J. Neurosci. 2, 733–743.PubMedCrossRefGoogle Scholar
  79. 78.
    Zhang, X., Verge, V., Wiesenfeld-Hallin, Z., Ju, G., Bred,t D., Snyder, S.H. and Hökfelt, T. (1993) Nitric oxide synthase-like immunoreactivity in lumbar dorsal root ganglia and spinal cord of rat and monkey and effect of peripheral axotomy. J. Comp. Neurol, (in press).Google Scholar
  80. 79.
    Zhou, Y., Sun, Y.-H., Zhang, Z.-W. and Han, J.-S. (1992) Accelerated expression of cholecystokinin gene in the brain of rats rendered tolerant to morphine. Neuroreport 3, 1121–1123.PubMedCrossRefGoogle Scholar
  81. 80.
    Yanagisawa, M., Yag,i N., Otsuka, M., Yanaihara, C. and Yanaihara, N. (1986) Inhibitory effects of galanin on the isolated spinal cord of the newborn rat. Neurosci. Lett. 70, 278–282.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Zsuzsanna Wiesenfeld-Hallin
    • 1
  • Xu Xiao-Jun
    • 1
  1. 1.Department of Clinical Physiology, Section of Clinical Neurophysiology Karolinska InstituteHuddinge University HospitalHuddingeSweden

Personalised recommendations