Advertisement

Molecular Biology of Dynorphin Gene Expression in Relationship to Spinal Cord Processing of Pain

  • Michael J. Iadarola
  • Donna J. Messersmith
Part of the NATO ASI Series book series (volume 79)

Abstract

Peripheral inflammation and experimental neuropathic pain are known to induce a series of fundamental modifications of gene expression in neurons of the spinal cord dorsal horn. In most cases examined to date, the expression of the gene in question is increased.19–21,28,31–34,41,58,78 Several of the activated genes code for the precursor proteins of neuropeptides which include the dynorphin and enkephalin families of opioid peptides and the tachykinins, substance P and substance k.10,13,18,23 The increased expression results in an altered pattern of neuropeptide content in spinal cord second order neurons and their terminals 31–34,37,54,67 However, the exact physiological meaning of the increase in gene expression or peptide content remains somewhat of an open question. The increase likely signifies a greater state of physiological activity in the peptide synthesizing neuron and likely results in a more effective signal transduction through release of greater amounts of peptide. Some of the increases seen in spinal cord, therefore, may modulate or underlie neuronal excitability changes that are established over time in the dorsal horn during inflammation 30,79

Keywords

PC12 Cell Dorsal Horn Phorbol Ester Chloramphenicol Acetyl Transferase Peripheral Inflammation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abate, C., Luk, D., Gagne, E., Roeder R.G. and Curran, T. (1990) Fos and jun cooperate in transcriptional regulation via heterologous activation domains. Mol. Cell. Biol. 10, 5532–5535.PubMedGoogle Scholar
  2. 2.
    Angel, P., Imagawa, M., Chiu, R., Stein, B., Imbra, R.J., Rahmsdorf, H.J., Jonat C., Herrlich, P. and Karin, M. (1987) Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 49, 729–739.PubMedCrossRefGoogle Scholar
  3. 3.
    Angel, P., Allegretti, E.A., Okino, S.T., Hattori, K., Boyle, W.J., Hunter, T. and Karin M. (1988) Oncogene jun encodes a sequence specific trans-activator similar to AP-1. Nature 332, 166–171.PubMedCrossRefGoogle Scholar
  4. 4.
    Bading, H. and Greenberg, M.E. (1991) Stimulation of protein tyrosine phosphorylation by NMDA receptor activation. Science 253, 912–914.PubMedCrossRefGoogle Scholar
  5. 5.
    Berridge, M.J. (1993) Inositol trisphosphate and calcium signalling. Nature 361, 315–325.PubMedCrossRefGoogle Scholar
  6. 6.
    Blanar, M.A. and Rutter, W.J. (1992) Interaction cloning: identification of a helix-loop-helix zipper protein that interacts with c-fos. Science 256, 1014–1018.PubMedCrossRefGoogle Scholar
  7. 7.
    Bohmann, D., Bos, T.J., Admon, A., Nishimura, T., Vogt, P.K. and Tjian, R. (1987) Human proto-oncogene c-jun encodes a DNA binding protein with structural and functional properties of transcription factor AP-1. Science 238, 1386–1392.PubMedCrossRefGoogle Scholar
  8. 8.
    Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.PubMedCrossRefGoogle Scholar
  9. 9.
    Brindle, P.K. and Montminy, M.R. (1992) The CREB family of transcription activators. Curr. Opinion Genet. Dev. 2, 199–204.CrossRefGoogle Scholar
  10. 10.
    Carter, M.S. and Krause, J.E. (1990) Structure, expression, and some regulatory mechanisms of the rat preprotachykinin gene encoding substance P, neurokinin A, neuropeptide K, and neuropeptide Y. J. Neurosci. 10, 2203–2214.PubMedGoogle Scholar
  11. 11.
    Caudle, R.M. and Isaac, L. (1988) Influence of dynorphin (1–13) on spinal reflexes in the rat. J. Pharmacol. Exp. Ther. 246, 508–513.PubMedGoogle Scholar
  12. 12.
    Caudle, R.M., Chavkin, C. and Dubner R. Kappa2 opioid receptors inhibit NMDA receptor-mediated synaptic currents in guinea pig CA3 pyramidal cells. (Submitted).Google Scholar
  13. 13.
    Civelli, O., Douglass, J., Goldstein, A. and Herbert, E. (1985) Sequence and expression of the rat prodynorphin gene. Proc. Natl. Acad. Sci. U.S.A. 82, 4291–4295.PubMedCrossRefGoogle Scholar
  14. 14.
    Cohen, D. and Curran, T. (1988) fra-1: a serum inducible, cellular immediate-early gene that encodes a fos-related antigen. Mol. Cell. Biol. 8, 2063–2069.PubMedGoogle Scholar
  15. 15.
    Comb, M., Birnberg, N.C., Seasholtz, A., Herbert, E. and Goodman, H.M. (1986) A cyclic AMP- and phorbol ester-inducible DNA element. Nature 323, 353–356.PubMedCrossRefGoogle Scholar
  16. 16.
    Comb, M., Mermod, N., Hyman S.E., Pearlberg, J., Ross, M.E. and Goodman, H.M. (1988) Proteins bound at adjacent DNA elements act synergistically to regulate human proenkephalin cAMP inducible transcription. EMBO J. 7, 3793–3805.PubMedGoogle Scholar
  17. 17.
    Dignam, J.D., Lebovitz, R.M. and Roeder, R.G. (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489.PubMedCrossRefGoogle Scholar
  18. 18.
    Douglass J., Mcmurray, C.T., Garrett J.E., Adelman, J.P. and Calavetta L. (1989) Characterization of the rat prodynorphin gene. Mol. Endocrinol. 13, 2070–2078.CrossRefGoogle Scholar
  19. 19.
    Draisci, G., Kajander, K.C., Dubner, R., Bennett, G.J. and Iadarola, M.J. (1991) Up-regulation of opioid gene expression in spinal cord evoked by experimental nerve injuries and inflammation. Brain Res. 560, 186–192.PubMedCrossRefGoogle Scholar
  20. 20.
    Draisci, G. and Iadarola, M.J. (1989) Temporal analysis of increases in c-fos, preprodynorphin and preproenkephalin mRNAs in rat spinal cord. Molec. Brain Res. 6, 31–37.PubMedCrossRefGoogle Scholar
  21. 21.
    Draisci, G. and Iadarola M.J. Evaluation of tachykinin, CGRP and cholecystokinin peptide and mRNA levels in dorsal root ganglion and spinal cord during peripheral inflammation. (Submitted).Google Scholar
  22. 22.
    Franza B.R. Jr., Rauscher, F.J. III, Josephs, S.F. and Curran, T. (1988) The fos complex and fos-related antigens recognize sequence elements that contain AP-1 binding sites. Science 239, 1150–1153.PubMedCrossRefGoogle Scholar
  23. 23.
    Goldstein, A., Fishli, W., Lowney, L.L, Hunkapillar, M. and Hood, L.E. (1981) Porcine pituitary dynorphin: complete amino acid sequence of the biologically active heptadecapeptide. Proc. Natl. Acad. Sci., U.S.A. 78, 7219–7223.PubMedCrossRefGoogle Scholar
  24. 24.
    Hai, T. and Curran, T. (1991) Cross-family dimerization of transcription factors fos/jun and ATF/CREB alters DNA binding specificity. Proc. Natl. Acad. Sci. U.S.A. 88, 3720–3724.PubMedCrossRefGoogle Scholar
  25. 25.
    Hai, T., Liu, F., Coukos, W.J. and Green, M.R. (1989) Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev. 3, 2083–2090.PubMedCrossRefGoogle Scholar
  26. 26.
    Herdegen, T., Kovary, K., Leah, J. and Bravo, R. (1991) Specific temporal and spatial distribution of JUN, FOS and KROX-24 proteins in spinal neurons following noxious transsynaptic stimulation. J. Comp. Neurol. 313, 178–191.PubMedCrossRefGoogle Scholar
  27. 27.
    Herman, B.H. and Goldstein, A. (1985) Antinociception and paralysis induced by intrathecal dynorphin A. J. Pharmacol. Exp. Ther. 232, 27–32.PubMedGoogle Scholar
  28. 28.
    Hollt, V., Haarmann, I., Millan, M.J. and Herz, A. (1987) Prodynorphin gene expression is enhanced in the spinal cord of chronic arthritic rats. Neurosci. Letts. 73, 90–94.CrossRefGoogle Scholar
  29. 29.
    Huggenvik, J.I., Collard M.W., Stofko, R.E., Seasholtz, A.F. and Uhler, M.D. (1991) Regulation of the human enkephalin promoter by two isoforms of the catalytic subunit of cyclic adenosine 3′,5′-monophosphate-dependent protein kinase. Mol. Endocrinol. 5, 921–930.PubMedCrossRefGoogle Scholar
  30. 30.
    Hylden, J.L.K., Nahin, R.L., Traub, R.L. and Dubner R. (1989) Expansion of receptive fields of spinal lamina I projection neurons in rats with unilateral adjuvant-induced inflammation: the contribution of central dorsal horn mechanisms. Pain 37, 229–243.PubMedCrossRefGoogle Scholar
  31. 31.
    Iadarola M.J., Civelli, O., Douglass, J. and Naranjo, J.R. Increased spinal cord dynorphin mRNA during peripheral inflammation. In: J.W. Holaday, P.-Y. Law and A. Herz (Eds.), Progress in Opioid Research, NIDA Research Monograph, Vol. 75, 1986, pp. 406–409.Google Scholar
  32. 32.
    Iadarola, M.J., Brady, L.S., Draisci, G. and Dubner, R. Enhancement of dynorphin gene expression in spinal cord following experimental inflammation: Stimulus specificity, behavioral parameters and opioid receptor binding. Pain, 35 (1988) 313–326.PubMedCrossRefGoogle Scholar
  33. 33.
    Iadarola, M.J., Douglass, J., Civelli, O. and Naranjo, J.R. Differential activation of spinal cord dynorphin and enkephalin neurons during hyperalgesia: evidence using cDNA hybridization. Brain Res., 455 (1988) 205–212.PubMedCrossRefGoogle Scholar
  34. 34.
    Iadarola, M.J. and Draisci G. (1988) Elevation of spinal cord dynorphin mRNA compared to dorsal root ganglion mRNAs during peripheral inflammation. In: The Arthritic Rat as a Model for Chronic Pain. eds. J.M. Besson and G. Guilbaud. Excerpta Medica, Amsterdam, pp. 173–184.Google Scholar
  35. 35.
    Iadarola, M.J., Mojdehi, G., Gu, J. and Messersmith, D.J. A protein complex differing from the Fos/Jun complex binds at an AP-1 variant enhancer element in the dynorphin promoter and is induced in spinal cord by peripheral inflammation. (Submitted).Google Scholar
  36. 36.
    Kageyama, R., Sasai, Y. and Nakanishi, S. (1991) Molecular characterization of transcription factors that bind to the cAMP responsive region of the substance P precursor gene. J. Biol. Chem. 266, 15525–15531.PubMedGoogle Scholar
  37. 37.
    Kajander, K.C., Sahara, Y., Iadarola, M.J. and Bennett, G.J. (1990) Dynorphin increases in the dorsal spinal cord in rats with a painful peripheral neuropathy. Peptides 11, 719–728.PubMedCrossRefGoogle Scholar
  38. 38.
    Kaynard A.H. and Melner M.H. (1992) Stimulation of prodynorphin gene expression requires a functional protein kinase A. Molec. Cellular Neurosci. 3, 278–285.CrossRefGoogle Scholar
  39. 39.
    Kaynard A.H., Mcmurray, C.T., Douglass, J., Curry, T.E. Jr., and Melner M.H. Regulation of prodynorphin gene expression in the ovary: distal DNA regulatory elements confer gonadotropin regulation of promoter activity. Molec. Endocrinol, (in press).Google Scholar
  40. 40.
    Kobierski, L.A., Chu, H.-M., Tan, Y. and Comb, M.J. (1991) cAMP-dependent regulation of proenkephalin by jun D and jun B: positive and negative effects of AP-1 proteins. Proc. Natl. Acad. Sci. U.S.A. 88, 10222–10226.PubMedCrossRefGoogle Scholar
  41. 41.
    Lucas, J.J., Mellstrom, B., Colado, M.I. and Naranjo, J.R. (1993) Molecular mechanisms of pain: serotonin 1a receptor agonists trigger transactivation by c-fos of the prodynorphin gene in spinal cord neurons. Neuron 10, 599–611.PubMedCrossRefGoogle Scholar
  42. 42.
    Maniatis T., Goodbourn S. and Fischer J.A. (1987) Regulation of inducible and tissue-specific gene expression. Science 236, 1237–1244.PubMedCrossRefGoogle Scholar
  43. 43.
    Margioris, A.N., Markogiannakis E., Makrigiannakis, A. and Gravanis, A. (1992) PC12 rat pheochromocytoma cells synthesize dynorphin. Its secretion is modulated by nicotine and nerve growth factor. Endocrinology 131, 703–709.PubMedCrossRefGoogle Scholar
  44. 44.
    Matsui, M., Tokuhara, M., Konuma, Y., Nomura, N. and Ishizaki, R. (1990) Isolation of human fos-related genes and their expression during monocyte-macrophage differentiation. Oncogene 5, 249–255.PubMedGoogle Scholar
  45. 45.
    Messersmith, D.J., Gu, J., Dubner, R., Douglass, J. and Iadarola, M.J. Constitutive and inducible transcriptional activity of a far upstream AP-1/CRE element in the prodynorphin promoter. (Submitted).Google Scholar
  46. 46.
    Minami, M., Kuraishi, Y., Kawamura, M., Yamaguchi, T., Masu, Y., Nakanishi, S. and Satoh, M. (1989) Enhancement of preprotachykinin A gene expression by adjuvant-induced inflammation in the rat spinal cord: possible involvement of substance P-containing spinal neurons in nociception. Neurosci. Lett. 98, 105–110.PubMedCrossRefGoogle Scholar
  47. 47.
    Millan M.J. Millan, M.H., Czlonkowski A., Hollt, V., Pilcher, C.W.T., Herz, A. and Colpaert, F.C. (1986) A model of chronic pain in the rat: response of multiple opioid systems to adjuvant-induced arthritis. J. Neurosci. 6, 899–906.PubMedGoogle Scholar
  48. 48.
    Miner, J.N. and Yamamoto, K.K. (1991) Regulatory crosstalk at composite response elements. Trends Biochem. Sci. 16, 423–426.PubMedCrossRefGoogle Scholar
  49. 49.
    Mitchell, P.J. and Tjian, R. (1989) Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245, 371–378.PubMedCrossRefGoogle Scholar
  50. 50.
    Montminy, M.R. and Bilezikjian, L.M. (1987) Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 328, 175–178.PubMedCrossRefGoogle Scholar
  51. 51.
    Morgan, J.I., and Curran T., (1986) Role of ion flux in the control of c-fos expression. Nature 322, 552–555.PubMedCrossRefGoogle Scholar
  52. 52.
    Morgan, J.I. and Curran, T. (1988) Calcium as modulator of the immediate-early gene cascade in neurons. Cell Calcium 9, 303–311.PubMedCrossRefGoogle Scholar
  53. 53.
    Morgan, J.I. and Curran, T. (1991) Stimulus-transcription coupling in nervous system: involvement of the inducible protooncogenes fos and jun. Ann. Rev. Neurosci. 14, 421–451.PubMedCrossRefGoogle Scholar
  54. 54.
    Nahin, R.L., Hylden J.L.K., Iadarola, M.J. and Dubner, R. (1989) 2Peripheral inflammation is associated with increased dynorphin immunoreactivity in both projection and local circuit neurons in the superficial dorsal horn of the rat lumbar spinal cord. Neurosci. Lett. 96, 47–252.CrossRefGoogle Scholar
  55. 55.
    Nakajima Y., Tsuchida, K., Negishi, M., Ito, S. and Nakanishi, S. (1992) Direct linkage of three tachykinin receptors to stimulation of both phosphatidyl inositol hydrolysis and cyclic AMP cascades in transfected Chinese hamster ovary cells. J. Biol. Chem. 267, 2437–2442.PubMedGoogle Scholar
  56. 56.
    Nakabeppu, Y., Ryder, K. and Nathans, D. (1988) DNA binding activities of three murine Jun proteins: stimulation by Fos. Cell 55, 907.PubMedCrossRefGoogle Scholar
  57. 57.
    Naranjo, J.R., Mellstrom, B., Achaval, M. and Sassone-Corsi, P. (1991) Molecular pathways of pain: Fos/Jun-mediated activation of a non-canonical AP-1 site in the prodynorphin gene. Neuron 6, 607–617.PubMedCrossRefGoogle Scholar
  58. 58.
    Noguchi, K., Morita, Y., Kiyama, H., Ono, K. and Tohyama, M. A (1988) Noxious stimulus induces the preprotachykinin-A gene expression in the rat dorsal root ganglion: a quantitative study using in situ hybridization histochemistry. Mol. Brain Res. 4, 31–35.CrossRefGoogle Scholar
  59. 59.
    Noguchi, K. and Ruda, M.A. Gene regulation in an ascending nociceptive pathway: inflammation-induced increase in preprotachykinin mRNA in rat lamina I spinal projection neurons. J. Neurosci. 12, (1992) 2563–2572.PubMedGoogle Scholar
  60. 60.
    Noguchi, K., Kowalski, K., Traub, R., Solodkin, A., Iadarola, M.J. and Ruda, M.A. (1991) Dynorphin expression and fos-like immunoreactivity following inflammation induced hyperalgesia are colocalized in spinal cord neurons. Mol. Brain Res. 10, 227–233.PubMedCrossRefGoogle Scholar
  61. 61.
    Nomura N., Zu, Y.-L., Maekawa, T., Tabata, S., Akiyama, T. and Ishii S. (1993) Isolation and characterization of a novel member of the gene family encoding the cAMP response element-binding protein CRE-BP1. J. Biol Chem. 268, 4259–4266.PubMedGoogle Scholar
  62. 62.
    Ono, S.J., Liou, H.-C., Davidon, R., Strominger, J.L. and Glimcher, L.H. (1991) Human X-box-binding protein 1 is required for the transcription of a subset of human class II major histocompatibility genes and forms heterodimer with c-fos. Proc. Natl. Acad. Sci. U.S.A. 884, 309–4312.Google Scholar
  63. 63.
    Ptashne, M. (1986) Gene regulation by proteins acting nearby and at a distance. Nature 322, 697–701.PubMedCrossRefGoogle Scholar
  64. 64.
    Quinn, J.P., Takimoto, M., Iadarola, M.J., Holbrook, N. and Levens, D. (1989) Distinct factors bind the AP-1 consensus sites in gibbon ape leukemia virus and simian virus 40 enhancers. J. Virol. 63, 1737–1742.PubMedGoogle Scholar
  65. 65.
    Rauscher F.J. III, Sambucetti, L.C., Curran, T., Distel, R.J. and Spiegelman, B.M. (1988) Common DNA binding site for Fos protein complexes and transcription factor AP-1. Cell 52, 471–480.PubMedCrossRefGoogle Scholar
  66. 66.
    Rauscher, F.J. III, Cohen, D.R., Curran, T., Bos, T.J., Vogt, P.K., Bohmann, D., Tjian R. and Franza, B.R. Jr. (1988) Fos-associated protein p39 is the product of the jun proto-oncogene. Science 240, 1010–1016.PubMedCrossRefGoogle Scholar
  67. 67.
    Ruda, M.A., Iadarola, M.J., Cohen, L.V. and Young, W.S. (1988) In situ hybridization histochemistry and immunocytochemistry reveal an increase in spinal dynorphin biosynthesis in a rat model of peripheral inflammation and hyperalgesia. Proc. Natl. Acad. Sci. USA 85, 622–626.PubMedCrossRefGoogle Scholar
  68. 68.
    Ryseck, R.-P. and Bravo, R. (1990) c-jun, jun B, and jun D differ in their binding affinities to AP-1 and CRE consensus sequences: effect of FOS proteins. Oncogene 6, 533–542.Google Scholar
  69. 69.
    Sassoni-Corsi, P., Visvader, J., Ferland, L., Mellon, P.L. and Verma, I.M. (1988) Induction of proto-oncogene fos transcription through the adenylate cyclase pathway: characterization of a cAMP-responsive element. Genes Dev. 2, 1529–1538.CrossRefGoogle Scholar
  70. 70.
    Sheng, M., Dougan, S.T., Mcfadden, G. and Greenberg, M.E. (1988) Calcium and growth factor pathways of c-fos transcriptional activation require distinct upstream regulatory sequences. Mol. Cell. Biol. 8, 2787–2796.PubMedGoogle Scholar
  71. 71.
    Sheng, M., Mcfadden, G. and Greenberg, M. (1990) Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron 4, 571–582.PubMedCrossRefGoogle Scholar
  72. 72.
    Sonnenberg, J.L., Rauscher, F.J. III, Morgan, J.I. and Curran, T. (1989) Regulation of proenkephalin by Fos and Jun. Science 246, 1622–1625.PubMedCrossRefGoogle Scholar
  73. 73.
    Sonnenberg, J.L, Macgregor-Leon, P.F., Curran, T. and Morgan, J.I. (1989) Dynamic alterations occur in the levels and composition of transcription factor AP-1 complexes after seizure. Neuron 3, 359–365.PubMedCrossRefGoogle Scholar
  74. 74.
    Tata, J.R. (1974) Isolation of nuclei from liver and other tissues. Meth. Enzymol. 31A, 253–257.PubMedCrossRefGoogle Scholar
  75. 75.
    Velazquez, L., Fellous, M., Stark, G.R. and Pellegrini, S. (1992) A protein tyrosine kinase in the interferon a/B signaling pathway. Cell 70, 313–322.PubMedCrossRefGoogle Scholar
  76. 76.
    Velcich, A. and Ziff, E.B. (1990) Functional analysis of an isolated promoter element with AP-1 site homology reveals cell type-specific transcriptional properties. Mol. Cell. Biol. 10, 6273–6282.PubMedGoogle Scholar
  77. 77.
    Vinson, C.R., Sigler, P.B. and Mcknight, S.L. (1989) Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 246, 911–916.PubMedCrossRefGoogle Scholar
  78. 78.
    Wisden, W., Errington, M.L., Williams, S., Dunnett, S.B., Waters, C., Hitchcock, D., Evan, C., Bliss, T.V.P., and Hunt, S.P. (1990) differential expression of immediate early genes in the hippocampal formation and spinal cord. Neuron 4, 603–614.PubMedCrossRefGoogle Scholar
  79. 79.
    Woolf, C., and Wiesenfeld-Hallin, Z. (1986) Substance P and calcitonin gene-related peptide synergistically modulate the gain of the nociceptive flexor withdrawal reflex in the rat, Neurosci. Lett. 66, 226–230.PubMedCrossRefGoogle Scholar
  80. 80.
    Yamamato, K.K., Gonzalez, G.A., Biggs, W.H., and Montminy, M.R. (1988) Phosphorylation-induced binding and transcriptional efficacy of nuclear factor CREB. Nature 334, 494–498.CrossRefGoogle Scholar
  81. 81.
    Yang, H.-Y.T., Hexum, T. and Costa, E. (1980) Opioid peptides in adrenal gland. Life Sci. 27, 1119–1125.PubMedCrossRefGoogle Scholar
  82. 82.
    Yasuda, K., Raynor, K., Kong, H., Breder, C.D., Takeda, J., Reisine, T. and Bell, G.I. (1993) Cloning and functional comparison of K and S opioid receptors from mouse brain. Proc. Natl. Acad. Sci. U.S.A. 90, 6736–6740.PubMedCrossRefGoogle Scholar
  83. 83.
    Zerial, M., Toschi, L., Ryseck, R.-P., Schuermann, M., Miller, R. and Bravo, R. (1989) The product of a novel growth factor activated gene, fos B, interacts with JUN proteins enhancing their DNA binding activity. EMBO J. 8, 805–813.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Michael J. Iadarola
    • 1
  • Donna J. Messersmith
    • 1
  1. 1.Neurobiol. and Anesthesiol. Branch, NIDR, NIHBethesdaUSA

Personalised recommendations