Advertisement

Polymer Design for Minimally Adhesive Surfaces

  • K. J. Wynne
  • T. Ho
  • R. A. Nissan
  • X. Chen
  • J. A. GardellaJr.
Conference paper

Abstract

In connection with our interest in the development of minimally adhesive surfaces to discourage the settlement of marine organisms, we have investigated polyurethanes and polyureas containing polydimethylsiloxane (PDMS) segments. A two-step polymerization method was used to prepare dimethylsiloxane-urea-urethane copolymers with 1,4-benzenedimethanol as the chain extender. Thermal and mechanical properties of copolymers with chain extenders were found to be superior to those without chain extender, due to the additional hydrogen bonding interactions for the former. Surface composition was determined by angle-dependent electron spectroscopy for chemical analysis (ESCA). Effects of segmental length and annealing on the surface composition were investigated. One of the siloxane containing copolymers was used as the minor component (1.6, 2.5 and 6.0 wt %) in a series of blends with a poly(ether-urethane), which preserved the mechanical properties of the poly(ether-urethane) as well as the surface properties of the poly(siloxane-urea-urethane).

Keywords

Hard Segment Soft Segment Chain Extender Hard Segment Content Isophorone Diisocyanate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brady RF, Griffith JR, Love KS, Field DE (1987) J Coatings Tech 59: 113Google Scholar
  2. 2.
    Tyagi D, Yilgör I, McGrath JE, Wilkes G L (1984) Polymer 25: 1807CrossRefGoogle Scholar
  3. 3.
    Yu XH, Nagarajan MR, Grasel TG, Gibson PE, Cooper SL (1985) J Polym Sci Polym Phys Ed 23: 2319CrossRefGoogle Scholar
  4. 4.
    Oishi Y, Kakimoto M, Imai Y (1987) J Polym Sci, Part A: Polym Chem 25: 2185Google Scholar
  5. 5.
    Chen L, Yu XH (1991) Functional Polymer 4: 19Google Scholar
  6. 6.
    Yilgör I, McGrath JE (1988) Adv Polym Sci 86: 1CrossRefGoogle Scholar
  7. 7.
    Harrell LL Jr (1969) Macromolecules 2: 607CrossRefGoogle Scholar
  8. 8.
    Ho T, Wynne KJ, Nissan RA (1993) Macromolecules 26: 7029CrossRefGoogle Scholar
  9. 9.
    Chen X, Gardella JA Jr, Ho T, Wynne, KJ in pressGoogle Scholar
  10. 10.
    Clark DT (1977) Advances in Polymer Sciences 24: 126Google Scholar
  11. 11.
    Tezkuka Y, Kazuma H, Imai K (1991) J Chem Soc Faraday Trans 87: 147CrossRefGoogle Scholar
  12. 12.
    Shibayama M, Suetsugu M, Sakurai S, Yamamoto T, Nomura S (1991) Macromolecules 24: 6254CrossRefGoogle Scholar
  13. 13.
    Benrashid R, Nelson GL, Linn JH, Hanley KH, Wade WR (1993) J Appi Poly Sci 49: 523CrossRefGoogle Scholar
  14. 14.
    Chen X, Gardella JA Jr (1992) Polym Prepr Am Chem Soc Div Polym Chem 33 (2): 312Google Scholar
  15. 15.
    Chen X, Gardella JA Jr, Kumler PL in pressGoogle Scholar
  16. 16.
    Mittlefehldt ER, Gardella JA Jr (1989) Appi Spectrosc 43: 1172CrossRefGoogle Scholar
  17. 17.
    Chen X, Lee HF, Gardella J A Jr (1993) Macromolecules 26: 4601CrossRefGoogle Scholar
  18. 18.
    Pertsin A J, Gorelova MM, Levin V Yu, Makarova LI (1992) J Appi Poly Sci 45: 1195CrossRefGoogle Scholar
  19. 19.
    Chen X, Gardella JA Jr, Kumler PL (1992) Mcromolecules 25: 6621CrossRefGoogle Scholar
  20. 20.
    Chen X, Gardella JA Jr, Kumler PL (1992) Macromolecules 25: 6631CrossRefGoogle Scholar
  21. 21.
    Thomas, H. R.; O’Malley, J. J. Macromolecules, 1979, 72, 323.CrossRefGoogle Scholar
  22. 22.
    Coulon G, Russell TR, Deline VR, Green PF (1989) Macromolecules 22: 2581CrossRefGoogle Scholar
  23. 23.
    Bass RL, Porter MR (1963) In: Moilliet JL (ed) Water Proofing and Water Repellency, Elsevier, Amsterdam London New YorkGoogle Scholar
  24. 24.
    Ho T, Wynne KJ in pressGoogle Scholar
  25. 25.
    Veith CA, Cohen RE (1991) Makromol Chem Macromol Symp 42 /43: 241CrossRefGoogle Scholar
  26. 26.
    We used programs included in Mathematica to perform this operation; Wolfram S (1991) Mathematica: a system for doing mathematics by computer, 2nd ed, Addison-Wesley Publishing Company, Ine, Redwood City, CaliforniaGoogle Scholar
  27. 27.
    Suri vet F, Lam TM, Pascault JP (1991) J Polym Sci Polym Chem Ed 29: 1977CrossRefGoogle Scholar
  28. 28 a).
    Kajiyama M, Kakimoto M, Tmai Y (1990) Macromolecules 23:1244 (b) The authors unpublished resultsGoogle Scholar
  29. 29.
    Cooper SL, Tobolsky AV (1966) J Appi Polym Sci 10: 1837CrossRefGoogle Scholar
  30. 30.
    Wu S (1982) Polymer Interface and Adhesion, Marcel Dekker, New YorkGoogle Scholar
  31. 31.
    Previous efforts in de-convoluting ESCA data include (a)Iwasaki H, Nishitani R, Nakamura S (1978) Jpn J Appi Phys 17:1519 (b) Pijolat M, Hollinger G (1981) Surf Sci 105:114 (c) Nefedov VI, Baschenko OA (1988) J Electron Spectrosc Relat Phenom 47:1 (d) Tyler BJ, Castner DG, Ratner BD (1989) Surf Interface Anal 14:443 (e) Jisl R (1990) Surf Interface Anal 15:719 (f) Holloway PH, Bussing TD (1992) Surf Interface Anal 18: 251Google Scholar
  32. 32.
    Phillips MC, Riddiford AC (1972) J Colloid Interface Sci 41: 77CrossRefGoogle Scholar
  33. 33.
    Owens DK, Wendt RC (1969) J Appi Polym Sci 13: 174Google Scholar
  34. 34.
    Kobayashi H, Owen MJ (1990) Macromolecules 23: 4929CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • K. J. Wynne
    • 1
    • 2
  • T. Ho
    • 3
  • R. A. Nissan
    • 4
  • X. Chen
    • 5
  • J. A. GardellaJr.
    • 5
  1. 1.Chemistry DivisionOffice of Naval ResearchArlingtonUSA
  2. 2.Materials Chemistry BranchNaval Research LaboratoryUSA
  3. 3.Department of ChemistryGeorge Mason UniversityFairfaxUSA
  4. 4.Chemistry DivisionNaval Air Weapons CenterChina LakeUSA
  5. 5.Department of ChemistryState University of New York at BuffaloBuffaloUSA

Personalised recommendations