Dinoflagellate Cysts as Paleoproductivity Indicators: State of the Art, Potential, and Limits

  • B. Dale
  • A. Fjellså
Part of the NATO ASI Series book series (volume 17)

Abstract

Dinoflagellate cysts are useful marine paleoenvironmental indicators of: sea surface temperatures, salinity, and coastal/oceanic water mass boundaries. Most are coastal/neritic; very few oceanic cysts are produced, and deep sea assemblages probably often include many that are transported long distances from coastal environments. This factor must be considered in attempts to apply standard transfer functions in paleoceanographic interpretations from deep sea sediments. Cysts are potentially useful for productivity studies as indicators of upwelling and eutrophication (especially where mineralized microfossils are absent through dissolution).

Keywords

Phytoplankton Holocenes Miocene Stratigraphy Pleistocene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bujak JP (1984) Cenozoic dinoflagellate cysts and acritarchs from the Bering Sea and northern North Pacific, DSDP Leg 19. Mieropaleontology 30:180–212CrossRefGoogle Scholar
  2. CLIMAP Project Members (1976) The surface of the iceage Earth. Science 191:1131–1137CrossRefGoogle Scholar
  3. Dale B (1983) Dinoflagellate resting cysts: “benthic plankton”. In: Fryxell GA (ed) Survival strategies of the algae. Cambridge University Press Cambridge: 69–136Google Scholar
  4. Dale B (1985) Dinoflagellate cyst analysis of Upper Quaternary sediments in core GIK 15530–4 from the Skagerrak. Norsk Geologisk Tidsskrift 65:97–102Google Scholar
  5. Dale B (1986) Life cycle strategies of oceanic dinoflagellates. Unesco technical papers in marine science 49:65–72Google Scholar
  6. Dale B, Dale A (1992) Dinoflagellate contributions to the deep Sea. Ocean Biocoenosis Series 5, Woods Hole Oceanographic Institution Woods Hole 76 ppCrossRefGoogle Scholar
  7. Dale B, Nordberg K (1993) Possible environmental factors regulating prehistoric and historic “blooms” of the toxic dinoflagellate Gymnodiniwn catenatum in the Kattegat-Skagerrak region of Scandinavia. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Proceedings of the Fifth International Conference on Toxic Marine Phytoplankton Newport Rhode Island USA 28 October — 1 November 1991. Elsevier Science Publishers AmsterdamGoogle Scholar
  8. Dale B, Madsen A, Nordberg K, Thorsen TA (1993) Evidence for prehistoric and historic “blooms” of the toxic dinoflagellate Gymnodiniwn catenatum in the Kattegat-Skagerrak region of Scandinavia. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Proceedings of the Fifth International Conference on Toxic Marine Phytoplankton Newport Rhode Island USA 28 October — 1 November 1991. Elsevier Science Publishers AmsterdamGoogle Scholar
  9. Dodge J D, Harland R (1991) The distribution of planktonic dinoflagellates and their cysts in the eastern and northeastern Atlantic Ocean. New Phytologist 118:593–603CrossRefGoogle Scholar
  10. Edwards LE, Mudie PJ, de Vernal A (1991) Pliocene paleoclimatic reconstruction using dinoflagellate cysts: comparison of methods. Quaternary Science Reviews 10:259–274CrossRefGoogle Scholar
  11. Eppley RW, Harrison WG (1974) Physiological ecology of Gonyaulax polyedra: A red water dinoflagellate of Southern California. In: Locicero V R (ed) The First International Conference on Toxic Dinoflagellate Blooms. The Massachusetts Science and Technology Foundation Wakefield Massachusetts: 11–22Google Scholar
  12. Evitt WR (1985) Sporopollenin dinoflagellate cysts — their morphology and interpretation. American Association of Stratigraphic Palynologists Foundation Austin 333 ppGoogle Scholar
  13. Harland R (1983) Distribution maps of Recent dinoflagellate cysts in bottom sediments from the North Atlantic Ocean and adjacent seas. Palaeontology 26:321–387Google Scholar
  14. Johnson D A, Ledbetter M, Burkle L H (1977) Verna Channel paleoceanography: Pleistocene dissolution cycles and episodic bottom water flow. Marine Geology 23:1–33CrossRefGoogle Scholar
  15. Lange CB, Berger, WH, Burke SK, Casey RE, Schimmelmann A, Soutar A, Weinheimer AL (1987) El Nino in Santa Barbara Basin: diatom, radiolarian and foraminiferan responses to the “1983 El Nino” event. Mar Geol 78:153–160CrossRefGoogle Scholar
  16. Lange CB, Burke SK, Berger WH (1990) Biological production off southern California is linked to climatic change. Climatic Change 16:319–329CrossRefGoogle Scholar
  17. Lewis J, Dodge JD, Powell AJ (1990) Quaternary dinoflagellate cysts from the upwelling system offshore Peru, Hole 686B, ODP Leg 112. In: Suess E, von Huene R, et al Proceedings of the Ocean Drilling Program Scientific Results. Ocean Drilling Program College Station Texas 112:323–328Google Scholar
  18. Madsen A (1990) Dinoflagellate cysts in sediment as eutrophication indicators in the Bunnefjord, inner Oslofjord. Unpublished Cand. Scient thesis University of Oslo NorwayGoogle Scholar
  19. McMinn A (1992) Recent and Late Quaternary dinoflagellate cyst distribution on the continental shelf and slope of southeastern Australia. Palynology 16:13–24CrossRefGoogle Scholar
  20. Mudie PJ, De Vernal A, Head MJ (1990) Neogene to Recent palynostratigraphy of circumarctic basins: results of ODP Leg 104, Norwegian, Sea Leg 105, Baffin Bay, and DSDP Site 611, Irminger Sea. In: Bleil U, Theide J (eds) Geological History of the Polar Oceans: Arctic versus Antarctic. Kluwer The Hague 609–646Google Scholar
  21. Morzadec-Kerfourn M-T (1977) Les Kystes de dinoflagellés dans les sédiments récents le long des côtes Bretonnes. Revue de Micropaléontologie 20:157–166Google Scholar
  22. Needham HD, Habib D, Heezen BC (1969) Upper Carboniferous palynomorphs as a tracer of red sediment dispersal patterns in the Northwest Atlantic. Journal of Geology 77:113–120CrossRefGoogle Scholar
  23. Oberhänsli H, Heinze P, Diester-Haass L, Wefer G (1990) Upwelling off Peru during the last 430, 000 yr and its relationship to the bottom-water environment, as deduced from coarse grain-size distributions and analyses of benthic foraminifers at Holes 679D, 680B, and 681B, Leg 112. In: Suess E, von Huene R, et al Proceedings of the Ocean Drilling Program Scientific Results. Ocean Drilling Program College Station Texas 112:369–390Google Scholar
  24. Powell AJ, Lewis J, Dodge JD (1992) The palynological expressions of post-Palaeogene upwelling: a review. In: Summerhayes CP, Prell WL, Emeis KC (eds) Upwelling Systems: evolution since the Early Miocene. Geological Society Special Publication 64: 215–226Google Scholar
  25. Reid PC, Harland R (1977) Studies of Quaternary dinoflagellate cysts from the North Atlantic. American Association of Stratigraphic Palynologists Contribution Series 5A:147–169Google Scholar
  26. Schnepf E, Elbrächter M (1992) Nutritional Strategies in dinoflagellates: a review with emphasis on cell biological aspects. Europ J Protistol 28: 3–24Google Scholar
  27. Schrader H, Sorknes R (1990) Spatial and temporal variation of Peruvian coastal upwelling during the latest Quaternary. In: Suess E, von Huene R, et al Proceedings of the Ocean Drilling Program, Scientific Results. Ocean Drilling Program College Station Texas 112:391–406Google Scholar
  28. Smayda TJ (1990) Novel and nuisance phytoplankton blooms in the sea: Evidence for a global epidemic. In: Graneli E, Sundström B, Edler L, Anderson DA (eds) Toxic Marine Phytoplankton. Elsevier New York 29–40Google Scholar
  29. Suess E, von Huene R, et al (1990) Proceedings of the Ocean Drilling Program Scientific Results. Ocean drilling Program College station Texas 112Google Scholar
  30. Taylor FJR (ed) (1987) The biology of dinoflagellates. Botanical Monographs Volume 21. Blackwell Scientific Publications Oxford 785 ppGoogle Scholar
  31. Thiede J, Suess E (eds) (1983) Coastal upwelling, its sediment record; pt. B. Plenum Press New York 610 ppGoogle Scholar
  32. Turon J-L (1980) Dinoflagellés et environnement climatique. Les kystes de dinoflagellés dans les sédiments récents de l’Atlantique nord-oriental et leurs relations avecrenvironnement océanique. Application aux dépots Holocènes du Chenal de Rockall. Memoir Musée Naturelle d’Histoire Paris B27:269–282Google Scholar
  33. Wall D, Dale B (1973) Paleosalinity relationships of dinoflagellates in the Late Quaternary of the Black Sea — a summary. Geoscience and Man 7:95–102CrossRefGoogle Scholar
  34. Wall D, Dale B, Lohmann GP, Smith WK (1977) The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and adjacent seas. Marine Micropaleontology 2:121–200CrossRefGoogle Scholar
  35. Zippi PA (1992) Dinoflagellate cyst stratigraphy and climate fluctuations in the eastern North Atlantic during the last 150, 000 years. In: Head MJ, Wrenn JH (eds) Neogene and Quaternary Dinoflagellate Cysts and Acritarchs. American Association of Stratigraphic Palynologists Foundation Dallas 55–68Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • B. Dale
    • 1
  • A. Fjellså
    • 1
  1. 1.Department of GeologyUniversity of OsloOslo 3Norway

Personalised recommendations