Glacial Ocean Carbon Cycle Modeling

  • Christoph Heinze
Conference paper
Part of the NATO ASI Series book series (volume 17)


The Hamburg Oceanic Carbon Cycle Circulation Model as a global tracer model suited for glacial ocean studies is briefly described. Experimental strategies for paleoclimatic model experiments are outlined. In sensitivity experiments the effect of a hydrography shift due to a change in sea level on the marine carbon cycle is investigated.


Carbon Cycle Particulate Organic Carbon Redfield Ratio Tracer Distribution Eastern Pacific Ocean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arakawa A, and VR Lamb (1977) Computational design of the basic dynamical process of the UCLA general circulation model. Meth. Com. Phys. 16: 173–283.Google Scholar
  2. Archer D, and E Maier-Reimer (accepted for publication). Deep sea CaCO3 burial and atmospheric pCO2. Nature.Google Scholar
  3. Bacastow RB and E Maier-Reimer (1990) Circulation model of the oceanic carbon cycle. Climate Dyn. 4: 95–125.CrossRefGoogle Scholar
  4. Balsam WL (1983) Carbonate dissolution on the Muir Seamount (Western North Atlantic): Interglacial/glacial changes. J. Sed. Pet. 53, 719–731.Google Scholar
  5. Berger WH, and RS Keir (1984) Glacial-Holocene changes in atmospheric CO2 and the deepsea record. In “Climate processes and climate sensitivity”, JE Hansen and T Takahashi, editors, pp. 337–351. American Geophysical Union, Geophysical Monograph 29, Washington D.C..CrossRefGoogle Scholar
  6. Boyle EA (1988) The role of vertical chemical fractionation in controlling late Quaternary atmospheric carbon dioxide. J. Geophys. Res. 93: 15,701–15,714.CrossRefGoogle Scholar
  7. Broecker WS (1982) Ocean chemistry during glacial time. Geochim. Cosmochim. Acta 46: 1689–1705.CrossRefGoogle Scholar
  8. Broecker WS, and TH Peng (1982) Tracers in the Sea. ELDIGIO Press, Lamont-Doherty Geological Observatory, Columbia University, Palisades, New York, 690 pp..Google Scholar
  9. Broecker WS, and TH Peng (1986) Carbon cycle: 1985 — Glacial to interglacial changes in the operation of the global carbon cycle. Radiocarbon 28: 309–327.Google Scholar
  10. Broecker WS, and TH Peng (1987) The oceanic salt pump: Does it contribute to the glacial— interglacial difference in atmospheric CO2 content ? Global Biogeochem. Cyc. 1: 251–259.CrossRefGoogle Scholar
  11. Broecker WS, and T Takahashi (1977) Neutralization of fossil fuel CO2 by marine calcium carbonate. In: The fate of fossil fuel CO2 in the oceans, NR Anderson and A Malahoff, editors, Plenum Press, New York, 213–241.Google Scholar
  12. Broecker WS, and T Takahashi (1978) The relationship between lysocline depth and in situ carbonate ion concentration. Deep-Sea Res. 25: 65–95.Google Scholar
  13. Chappell J, and NJ Shackleton (1986) Oxygen isotopes and sea level. Nature 324: 137–140.CrossRefGoogle Scholar
  14. Crowley TJ (1983) Calcium-carbonate preservation patterns in the central North Atlantic during the last 150,000 years. Mar. Geol. 51: 1–14.CrossRefGoogle Scholar
  15. Culberson CH, and RM Pytkowicz (1968) Effect of pressure on carbonic acid, boric acid and the pH in sea water. Limnol. Oceanogr. 13: 403–417.CrossRefGoogle Scholar
  16. deMenocal PB, DW Oppo, RG Fairbanks, and WL Prell (1992) Pleistocene δ13C variability of North Atlantic intermediate water. Paleoceanography 7: 229–250.CrossRefGoogle Scholar
  17. Duplessy JC, L Labeyrie, M Arnold, M Paterne, J Duprat, and TCE van Weering (1992) Changes in surface salinity of the North Atlantic Ocean during the last deglaciation. Nature 358: 485–488.CrossRefGoogle Scholar
  18. Edmond JM, and TM Gieskes (1970) On the calculation of the degree of saturation of sea water with respect to calcium carbonate under in situ conditions. Geochim. Cosmochim. Acta 34: 1,261–1,291.CrossRefGoogle Scholar
  19. Esser G (1987) Sensitivity of global carbon pools and fluxes to human and potential climatic impacts. Tellus 39B: 245–260.CrossRefGoogle Scholar
  20. Fairbanks RG (1989) A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342: 637–642.CrossRefGoogle Scholar
  21. Farrell JW, and WL Prell (1989) Climatic change and CaCO3 preservation: An 800,000 year bathymetric reconstruction from the central equatorial Pacific Ocean. Paleoceanography 4: 447–466.CrossRefGoogle Scholar
  22. Giering, R (1989) Assimilation von Satellitendaten in ein dreidimensionales numerisches Modell der atlantischen Zirkulation. Diplomarbeit. Max-Planck-Institut für Meteorologie, Hamburg, 94 p..Google Scholar
  23. Heinze C, and K Hasselmann (accepted for publication) Inverse multi-parameter modeling of paleo-climate carbon cycle indices. Quart. Res.Google Scholar
  24. Heinze C, and E Maier-Reimer (1992). The Hamburg Oceanic Carbon Cycle Circulation Model (Cycle 1). Technical Report No.\ 5, Deutsches Klimarechenzentrum, Hamburg 31 pp..Google Scholar
  25. Heinze C, E Maier-Reimer and K Winn (1991). Glacial pCO2 reduction by the World Ocean: Experiments with the Hamburg Carbon Cycle Model. Paleoceanography 6: 395–430.CrossRefGoogle Scholar
  26. Hellerman S, and M Rosenstein (1983) Normal monthly wind stress over the world ocean with error estimates, J. Phys. Oceanogr. 13: 1,093–1,104.CrossRefGoogle Scholar
  27. Hollingsworth A (1988) The role of real-time-four-dimensional data assimilation in the quality control, interpretation, and synthesis of climate data. In: Oceanic circulation models: Combining data and dynamics. DLT Anderson and J Willebrand, editors, NATO ASI series, Vol.\ 284, Kluwer, Dordrecht, 304–343.Google Scholar
  28. Ingle SE (1975) Solubility of calcite in the ocean, Marine Chemistry, 3, 301–319.CrossRefGoogle Scholar
  29. Kalman R (1960) A new approach to linear filtering and prediction problems. J.Basic Eng.Trans.ASME, Series D, 35–45.Google Scholar
  30. Keir, R (1988) On the late Pleistocene ocean geochemistry and circulation. Paleoceanography 3: 413–446.CrossRefGoogle Scholar
  31. Knox F, and MB McElroy (1984) Changes in atmospheric CO2: Influence of the marine biota at high latitude. J. Geophys. Res. 89: 4629–4637.CrossRefGoogle Scholar
  32. Kurz KD, and E Maier-Reimer (1992) Iron fertilization of the Austral Ocean — the Hamburg Model assessment. Global Biogeochem. Cyc. 7: 229–244.CrossRefGoogle Scholar
  33. Labeyrie LD, JC Duplessy, and PL Blanc (1987) Variations in mode of formation and temperature of oceanic deep waters over the past 125,000 years. Nature 327: 477–482.CrossRefGoogle Scholar
  34. Lautenschlager M, U Mikolajewicz, E Maier-Reimer, and C Heinze (1993) Application of ocean models for the interpretation of atmospheric general circulation model experiments on the climate of the last glacial maximum. Paleoceanography 7: 769–782.CrossRefGoogle Scholar
  35. Levitus S (1982) Climatological Atlas of the World Ocean, NOAA Professional Paper 13, Rockville Md..Google Scholar
  36. Long R, and W Thacker (1989) Data assimilation into a numerical equatorial ocean model. Part I: the model and assimilation algorithm. Dyn. Atmos. Oceans 13: 413–440.CrossRefGoogle Scholar
  37. Maier-Reimer, E. (accepted for publication) Geochemical cycles in an ocean general circulation model. Preindustrial tracer distributions. Global Biogeochem. Cycl.Google Scholar
  38. Maier-Reimer E, and R Bacastow (1990) Modeling of geochemical tracers in the ocean. In‘Climate-Ocean Interaction’, M E Schlesinger, editor, pp. 233–267. Kluwer, Dordrecht.CrossRefGoogle Scholar
  39. Maier-Reimer E, and K Hasselmann (1987) Transport and storage of CO2 in the ocean — an inorganic ocean-circulation carbon cycle model. Climate Dyn. 2: 63–90.CrossRefGoogle Scholar
  40. Maier-Reimer E, K Hasselmann, and U Mikolajewicz (1993) Mean circulation of the Hamburg LSG OGCM and its sensitivity to the thermohaline surface forcing. J. Phys. Oceanogr. 23: 731–757.CrossRefGoogle Scholar
  41. Mehrbach C, CH Culberson, JE Hawley, and RM Pytkowicz (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18: 897–907.CrossRefGoogle Scholar
  42. Michel E (1991) L’Océan au dernier maximum glaciaire: Le cycle du carbone et la circulation. Constraintes isotopiques et modelisation. PhD thesis. Universit\’{e} de Paris-Sud, 191 pp.Google Scholar
  43. Mix AC, NG Pisias, R Zahn, W Rugh, C Lopez, and K Nelson (1991) Carbon 13 in Pacific deep and intermediate waters, 0–370 KA: Implications for ocean circulation and Pleistocene CO2. Paleoceanography 6: 205–226.CrossRefGoogle Scholar
  44. Mook WG (1986) 13C in atmospheric CO2. Netherlands Journal of Sea Research 20: 211–223.CrossRefGoogle Scholar
  45. Parsons TR, and M Takahashi (1973) Biological Oceanographic Processes. Pergamon Press. 186 pp.Google Scholar
  46. Peterson LC, and WL Prell (1985) Carbonate preservation and rates of climatic change: An 800 kyr record from the Indian Ocean. In: The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, E T Sundquist and W S Broecker, editors, pp. 251–269. American Geophysical Union, Geophysical Monograph 32, Washington D.C..CrossRefGoogle Scholar
  47. Pichon J-J, LD Labeyrie, G Bareille, M Labracherie, J Duprat, and J Jouzel (1992) Surface water temperature changes in the high latitudes of the southern hemisphere over the last glacial-interglacial cycle. Paleoceanography 7: 289–318.CrossRefGoogle Scholar
  48. Sarmiento JL, and JR Toggweiler (1984) A new model for the role of the oceans in determining atmospheric pCO2. Nature 308, 620–624.CrossRefGoogle Scholar
  49. Sarnthein M, H Erlenkeuser, R von Grafenstein and C Schröder (1984) Stable-isotope stratigraphy for the last 750,000 years: “Meteor” core 13519 from the eastern Atlantic. Meteor Forsch.-Ergebn., Reihe C, 38: 9–24.Google Scholar
  50. Siegenthaler U, and T Wenk (1984) Rapid atmospheric CO2 variations and ocean circulation. Nature 308: 624–626.CrossRefGoogle Scholar
  51. Stuiver M, and HD Polach (1977) Discussion reporting of 14C data. Radiocarbon 19: 355–363.Google Scholar
  52. Weiss RF (1974) Carbon dioxide in water and sea water: the solubility of a non-ideal gas. Mar. Chem. 2: 203–215.CrossRefGoogle Scholar
  53. Winguth AME (1992) Windinduzierte interannuale Variabilität in der Warmwassersphäre von 1981 bis 1987 Teil II: Fluktuationen im Kohlenstoffkreislauf. Max-Planck-Institut für Meteorologie, Examensarbeit Nr. 14, Hamburg, 158 pp..Google Scholar
  54. Woodruff SD, RJ Slutz, RL Jenne, and PM Steurer (1987) A comprehensive ocean-atmosphere data set, Bulletin of the American Meteorological Society 68: 1,239–1, 250.CrossRefGoogle Scholar
  55. Zahn R, K Winn, and M Samthein (1986) Benthic foraminiferal δ13C and accumulation rates of organic carbon: Uvigerina peregrina group and Cibicidoides wuellerstorfi. Paleoceanography 1, 27–42.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Christoph Heinze
    • 1
  1. 1.Institut für Meereskunde der Universität HamburgHamburgGermany

Personalised recommendations