Skip to main content

PCO2 Variations of Equatorial Surface Water Over the Last 330,000 Years: The δ13C Record of Organic Carbon

  • Conference paper
Carbon Cycling in the Glacial Ocean: Constraints on the Ocean’s Role in Global Change

Part of the book series: NATO ASI Series ((ASII,volume 17))

Abstract

We reconstructed past variations in CO2 partial pressure (local PCO2) in the surface waters of the East Atlantic equatorial upwelling zone over the last 330,000 years, based on the δ13C record of the (marine) organic matter in ‘Meteor’ core 16772. To deduce the initial δ13Corganic values of plankton and the CO2 solubility in surface water, the δ13C record was adjusted for i) past variations in (winter) sea surface temperature, ii) variations in the δ13C composition of inorganic carbon dissolved in the surface waters, using the δ13C values of G. ruber (white), and iii) isotopic fractionation during the degradation of settling organic matter in the water column and on the sediment surface.

The calculated paleo-PCO2 variations in the surface waters show a strong signal at the obliquity frequency and are approximately parallel to the VOSTOK ice-core record of atmospheric PCO2 over the last 140,000 years. Holocene PCO2 values varied within the range of modern local PCO2, which is 350–400 ppmv compared to a pre-industrial atmospheric pCO2 level of 280 ppmv. This positive anomaly demonstrates the persistent CO2 release from upwelled subsurface water. The glacial-to-interglacial amplitudes of local PCO2 (at the core site) exceeded those of atmospheric pCO2 by 20–60%, with values of less than 250 to 300 ppmv during cold isotopic stages, which indicate a decreased net carbon outgassing from the ocean to the atmosphere. The close correlation between high paleo-PCO2 and low paleo-nutrient contents and paleoproductivity (r=0.7–0.8) suggests that the local PCO2 variations resulted mainly from CO2 transfer by phytoplankton production, especially over the last 170,000 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bard E, Hamelin B, Fairbanks RG, Zindler A,(1990) Calibration of the 14C timescales over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals, Nature, 345, 405–410.

    Article  Google Scholar 

  • Barnola JM, Raynaud D, Korotkevich YS, Lorius C,(1987) Vostok ice core provides 160,000- year record of atmospheric CO2, Nature, 329, 408–414.

    Article  Google Scholar 

  • Berger A, (1988) Milankovich theory and climate, Rev. Geophys. 26, 624–657.

    Article  Google Scholar 

  • Degens ET, Guillard RRL, Sacke« WM, Hellebust JA (1968) Metabolic fractionation of carbon isotopes in marine plankton.-I. Temperature and respiration experiments, Deep-Sea Res., 15, 1–9.

    Google Scholar 

  • Deprie E, (1983) Aufbau und Erprobung einer Kleinverbrennungs-anlage zur Untersuchung der stabilen Kohlenstoffisotope in organischem Material, Thesis, Univ. Kiel, 85 pp.

    Google Scholar 

  • Eglinton G, Bradshaw SA, Rosell A, Sarnthein M, Pflaumann U, Tiedemann R, (1992) Molecular record of secular sea surface temperature changes on 100-year timescales for glacial terminations I, II and IV, Nature, 356, 423–426.

    Article  Google Scholar 

  • Fairbanks RG, Wiebe PH, Bé AWH, (1980) Vertical distribution and isotopic composition of living planktonic foraminifera in the western North Atlantic, Science, 207, 61–63.

    Article  Google Scholar 

  • Fischer, G (1991) Sedimentation organischen Kohlenstoffs im östlichen Atiantik und die Veränderung des δ13C-Signals in der Wassersäule, Berichte, Fachber. Geowissenschaften, Universität Bremen, 16, 26–29.

    Google Scholar 

  • Fischer G, Wefer G (1991) Saisonaler Partikelfluß und das Auftriebs geschehen in einigen Auftriebsgebieten des östlichen Atlantiks, Berichte, Fachber. Geowissenschaften, Universität Bremen, 16, 29–31.

    Google Scholar 

  • Fontugne MR, (1983) Les isotopes stables du carbone organique dans l’océan. Application à la paléoclimatologie, Thèse Doctorat d’Etat Université de Paris XI, 224 pp.

    Google Scholar 

  • Fontugne MR, Descolas-Gros C, Billy de G, (1991) The dynamics of CO2-fixation in the Southern Ocean as indicated by carboxylase activities and organic carbon isotopic ratios, Mar. Chem., 35, 371–380.

    Article  Google Scholar 

  • Fontugne MR, Calvert SE, (1992) Late Pleistocene variability of the carbon isotopic composition of organic matter in the eastern Mediterranean: Monitor of changes in carbon sources and atmospheric CO2 concentrations, Paleoceanography, 7(1), 1–20.

    Article  Google Scholar 

  • Ganssen G, Sarnthein M (1983) Stable-isotope composition of foraminifers: The surface and bottom water record of coastal upwelling, In E. Suess, J. Thiede (eds.): Coastal Upwelling. Its Sediment record, A.-Plenum, New York, 99–121.

    Google Scholar 

  • Gorshkov SG, (1979) World Ocean Atlas, vol. 2, Atlantic and Indian Oceans, Ministry of Defense USSR Navy, Pergamon, New York.

    Google Scholar 

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth’s orbit: Pace maker of the Ice ages, Science, 194(4270), 1121–1132.

    Article  Google Scholar 

  • Heinze C, Maier-Reimer E, Winn K, (1991) Glacial reduction by the world ocean-experiments with the Hamburg carbon cycle model, Paleoceanography, 6, 395–430.

    Article  Google Scholar 

  • Imbrie J, Hays JD, Martinson DG, McIntyre A, Mix AC, Morley JJ, Pisias NG, Prell WL, Shackleton NJ, (1984) The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record, In: A.L. Berger et al. (eds.): Milankovitch and Climate, I, D. Reidel Publ. Co., Dordrecht, 269–305.

    Google Scholar 

  • Imbrie J, Boyle EA, Clemens SC et al. (1992) On the structure and origin of major glaciations cycles. 1. Linear responses to Milankovitch forcing, Paleoceanography 7,701–738.

    Article  Google Scholar 

  • Jasper JP, Hayes JM, (1990) A carbon isotope record of CO2 levels during the Late Quaternary, Nature 347, 462–464.

    Article  Google Scholar 

  • Kähler G, (1990) Oberflächentemperaturen im äquatorialen Atlantik während der letzten 330 000 Jahre (Meteor-Kern 16772), Unpubl. M. Sc. Thesis, Univ of Kiel, 102 pp.

    Google Scholar 

  • Leuenberger M, Siegenthaler U, (1992) Ice-age atmospheric concentration of nitrous oxide from an Antarctic ice core, Nature, 360, 449–451.

    Article  Google Scholar 

  • Lutze GF et al., (1988) Bericht über die Meteor-Fahrt 6–5 Dakar-Libreville 15.1.-16.2.1988, Berichte, Geol. Paläont. Inst. Univ. Kiel, 22, 60 S.

    Google Scholar 

  • McIntyre A, Ruddiman WF, Karlin K, Mix AC, (1989) Surface water response of the equatorial Atlantic Ocean to orbital forcing, Paleoceanography, 4, 19–55.

    Article  Google Scholar 

  • Martinson DG, Pisias NG, Hays JD, Imbrie J, Moore TC, Shackleton NJ, (1987) Age dating and the orbital theory of the ice ages: development of high resolution 0 to 300,000-year chronostratigraphy, Quatern. Res., 27, 1–29.

    Article  Google Scholar 

  • Michel E, (1991) L’océan au dernier maximum glaciaire: La cycle du carbone et la circulation. Contraintes isotopiques et modelisation, Thèse Univ. de Paris-Sud, Centre d’Orsay, 191 pp.

    Google Scholar 

  • Oudot C, Andrie C, Montel Y, (1987) Evolution du CO2 océanique et atmos phérique sur la période 1982–1984 dans l’Atlantique tropical, Deep-Sea Res., 34, 1107–1137.

    Article  Google Scholar 

  • Petit JR, Mounier L, Jouzel J, Korotkevich YS, Kotlyakov VI, Lorius C, (1990) Palaeoclimatological and chronological implications of the Vostok core dust record, Nature, 343, 56–58.

    Article  Google Scholar 

  • Pflaumann U, (1991) Temperaturreaktionen des nordäquatorialen Atlantiks auf globale Klima-Anfachung während der letzten 750.000 Jahre, Akademie d. Wiss u.d.Liter. Mainz, Abh. Math.-Naturw. Kl. (B Frenzel, Edit.), 177–196.

    Google Scholar 

  • Pflaumann U, Duprat J, Pujol C, Labeyrie LD, (1993) Simmax, a transfer technique to deduce sea surface temperatures from planktonic foraminifera — the EPOCH approach, Paleoceanography, (in press)

    Google Scholar 

  • Popp BN, Takigiku JM, Hayes JM, Louda JW, Baker EW, (1989) The post-paleozoic chronology and mechanism of 13C depletion in primary marine organic matter, Am. J. Sci., 289, 436–454.

    Article  Google Scholar 

  • Poynter J, (1989) The recognition of paleoclimatic signals in organic geochemical data, Ph. D. Thesis, Univ. of Bristol, U.K.

    Google Scholar 

  • Prahl FG, Wakeham SG, (1987) Calibration of unsaturation patterns in long-chain ketone compositions for paleo-temperature assessment, Nature, 330, 367–369.

    Article  Google Scholar 

  • Prell WL, Imbrie J, Martinson DG, Morley JJ, Pisias NG, Shackleton NJ, Streeter HF, (1986) Graphic correlation of oxygen isotope stratigraphy: Application to the late Quaternary, Paleoceanography, 1, 137–162.

    Article  Google Scholar 

  • Quay PD, Tilbrook B, Wong CS, (1992) Oceanic uptake of fossil fuel CO2: Carbon-13 evidence, Science, 256, 74–79.

    Article  Google Scholar 

  • Rau GH, Takahashi T, Des Marias DJ, (1989) Latitudinal variations in plankton δ13C: implications for CO2 and productivity in past oceans, Nature, 341, 516–518.

    Article  Google Scholar 

  • Rau GH, Froelich PN, Takahashi T, Des Marais DJ, (1991) Does sedimantary organic δ13C record variations in Quaternary ocean (CO2(aq))?, Paleoceanography, 6, 335–347.

    Article  Google Scholar 

  • Rau GH, Takahashi T, Des Marais DJ, Repeta DJ, Martin JH (1992) The relationship between 5 C of organic matter and (CO2(aq)) in ocean surface water: Data from a JGOFS site in the northeast Atlantic Ocean and a model, Geochim. Cosmochim. Acta. 56, 1413–1419.

    Article  Google Scholar 

  • Sackett WM, Eadie BJ, Exner ME, (1974) Stable isotope composition of organic carbon in recent Antarctic sediments, In: B. Tissot, F. Briemer (eds.): Advances in organic geochemistry. Paris. Technip. (Actes du 6’congrès international de géochimie organique), Rueil-Malmaison, France, 661–671.

    Google Scholar 

  • Sarnthein M, Pflaumann U, Ross R, Tiedemann R, Winn K, (1992) Transfer functions to reconstruct ocean paleoproductivity, a comparison, In: Evolution of upwelling systems since the Miocene, Summerhayes CP, Prell WL, Emeis K., editors, Geol. Soc. Spec. Publ., Blackwell, London, 411–427.

    Google Scholar 

  • Sarnthein M, Winn K (1990) Reconstruction of low and middle latitude export productivity, 30,000 years B.P. to Present: Implications for global carbon reservoirs, In: ME Schlesinger, editor, Climate-Ocean Interaction, Kluwer Acad. Publ., 319–342.

    Chapter  Google Scholar 

  • Schneider R, Müller PJ, Ruhland G, (1993) Late Quaternary pCO2 variations in the Angola current: Evidence from the organic carbon 8 C and alkenone temperatures, this volume. Siegenthaler U, (1990) Carbon-14 in the oceans, In: P Fritz, JC Fontes, editors, Isotope Geochemistry, Volume 3, Elsevier, 75–138.

    Google Scholar 

  • Struck U, Sarnthein M, Erlenkeuser H, Westerhausen L, (1993) Ocean-Atmosphere Carbon Exchange: Impact of the ‘Biological Pump’ in the Atlantic equatorial upwelling belt over the last 330,000 years, Palaeogeogr., Palaeoclimatol., Palaeoecol., 103, 41–56.

    Article  Google Scholar 

  • Tans PP, Fung IY, Takahashi T, (1990) Observational constraints on the global atmospheric CO2 budget, Science, 247, 1431–1438.

    Article  Google Scholar 

  • Thunell RC, Miao Q, Calvert SE, Pedersen TF, (1992) Glacial-Holocene biogenic sedimentation patterns in the South China Sea: productivity variations and surface water pCO2, Paleoceanography, 7(2), 143–162.

    Article  Google Scholar 

  • Weiss RF, (1974) Carbon dioxide in water and seawater: The solubility of a non-ideal gas, Mar. Chem., 2, 203–215.

    Article  Google Scholar 

  • Westerhausen L, (1992) Organische Sedimente im Ostatlantik: Einflüsse von Herkunft, Transportmustern, Diagenese und Klimaschwankungen, Berichte-Reports, Geol.-Paläont. Inst. Univ. Kiel, 48, 109 pp.

    Google Scholar 

  • Westerhausen L, Poynter J, Eglinton G, Erlenkeuser, K, Sarnthein M, (1993) Marine and terrigenous origin of organic matter in modern sediments of the equatorial east Atlantic: The δ13C and molecular record, Deep-Sea Res., 40(5),

    Google Scholar 

  • Winn K, Sarnthein M, Erlenkeuser H, (1991) δ13O stratigraphy and age control of Kiel sediment cores in the East Atlantic, Berichte-Reports, Geol. Paläont. Inst. Univ. Kiel, 45, 1–99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Westerhausen, L., Sarnthein, M., Struck, U., Erlenkeuser, H., Poynter, J. (1994). PCO2 Variations of Equatorial Surface Water Over the Last 330,000 Years: The δ13C Record of Organic Carbon. In: Zahn, R., Pedersen, T.F., Kaminski, M.A., Labeyrie, L. (eds) Carbon Cycling in the Glacial Ocean: Constraints on the Ocean’s Role in Global Change. NATO ASI Series, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78737-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78737-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78739-3

  • Online ISBN: 978-3-642-78737-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics