Advertisement

Abstract

Despite the lessons to be learned from the thalidomide disaster some 20 years ago, recent studies indicate that pregnant women are still consuming therapeutic agents in alarming quantities. Moreover the developmental risks imposed by the maternal use of substances of abuse are, perhaps more than many other risk factors, preventable. The etiology of human malformations includes both (1) genetic factors and (2) drugs and environmental agents (for established teratogens see Brendel et al. 1985).

Keywords

Cleft Palate Ethanol Exposure Cytosine Arabinoside Fetal Alcohol Syndrome Palatal Shelf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel El (1984) Fetal alcohol syndrome. Fetal alcohol effects. Plenum, New YorkCrossRefGoogle Scholar
  2. Abel El (1985) Prenatal effects of alcohol on growth: a brief overview. Fed Proc 14: 2318–2322Google Scholar
  3. Altura BM, Altura BT, Carella A, Chatterjee M, Halevy S, Te-jani N (1982) Alcohol produces spasms of human umbilical blood vessels: relationship to fetal alcohol syndrome (FAS). Eur J Pharmacol 86: 311–312PubMedCrossRefGoogle Scholar
  4. Aufrere G, LeBourhis B (1987) Effect of alcohol intoxication during pregnancy on foetal and placental weight: experimental studies. Alcohol Alcohol 22: 401–407PubMedGoogle Scholar
  5. Brendel K, Duhamel RC, Shepard TH (1985) Embryotoxic drugs. Biol Res Pregnancy 6:1–54Google Scholar
  6. Chernoff N, Rogers JM, Alles AJ, Zucker RM, Elstein KH, Massero EJ, Sulik KK (1989) Cell cycle alterations and cell death in cyclophosphamide teratogenesis. Teratogenesis Car-cinog Mutagen 9:199–209CrossRefGoogle Scholar
  7. Clayton DL, Mullen AW, Barnett CC (1975) Circadian modification of drug-induced teratogenesis in rat fetuses. Chrono-biologia 2: 210–217Google Scholar
  8. Endo A, Sakai N, Ohwada K (1987) Analysis of diurnal differences in teratogen (Ara-C) susceptibility in mouse embryos by a progressive phase-shift method. Teratogenesis Carcinog Mutagen 7: 475–182PubMedCrossRefGoogle Scholar
  9. Guerri C, Sanchis R (1985) Acetaldehyde and alcohol levels in pregnant rats and their fetuses. Alcohol 2: 267–270PubMedCrossRefGoogle Scholar
  10. Hales BF, Slott VL (1987) The role of reactive metabolites in drug-induced teratogenesis. Prog Clin Biol Res 253:181–191PubMedGoogle Scholar
  11. Isaacson RJ (1959) Investigation of some of the factors involved in the closure of the secondary palate. Thesis, Minnesota University, MinneapolisGoogle Scholar
  12. Jones JH, Leichter J, Lee M (1981) Placental blood in rats fed alcohol before and during gestation. Life Sci 29:1153–1159PubMedCrossRefGoogle Scholar
  13. Jones KL, Smith DW (1973) Recognition of the fetal alcohol syndrome in early infancy. Lancet 2: 999–1001CrossRefGoogle Scholar
  14. Reinberg A, Smolensky MH (1983) Biological rhythms and medicine. Springer, Berlin Heidelberg New YorkGoogle Scholar
  15. Sauerbier I (1981) Circadian system and teratogenicity of cytostatic drugs. Prog Clin Res 59 C: 143–149Google Scholar
  16. Sauerbier I (1982) Unterschiedliche Konzeptionsfahigkeit der weiblichen Han: NMRI Maus. Einfluβ der Verpaarung am Abend und am Morgen. Z Versuchstierkd 23:161–164Google Scholar
  17. Sauerbier I (1983) Embryotoxische Wirkung von Zytostatika in Abhangigkeit von der Tageszeit der Applikation bei Mausen. Verh Anat Ges 77:147–149Google Scholar
  18. Sauerbier I (1986 a) Circadian variation in teratogenic response to dexamethasone in mice. Drug Chem Toxicol 9: 25–31PubMedCrossRefGoogle Scholar
  19. Sauerbier I (1986 b) Circadian modification of 5-fluorouracil-induced teratogenesis in mice. Chronobiol Int 3:161–164PubMedCrossRefGoogle Scholar
  20. Sauerbier I (1987) Circadian modification of ethanol damage in utero in mice. Am J Anat 178:170–174PubMedCrossRefGoogle Scholar
  21. Sauerbier I (1988) Circadian influence on ethanol-induced intrauterine growth retardation in mice. Chronobiol Int 5: 211–216PubMedCrossRefGoogle Scholar
  22. Sauerbier I (1989) Embryotoxicity of drugs: possible mechanisms of action. In: Lemmer B (ed) Chronopharmacology. Cellular and biochemical interactions. Dekker, New York, pp 683–697 (Cellular clocks, vol 3)Google Scholar
  23. Savoy-Moore RT, Dombrowski MP, Cheng A, Abel EA, Sokol RJ (1989) Low dose alcohol contracts the human umbilical artery in vitro. Alcoholism (NY) 13: 40–42Google Scholar
  24. Schmidt R (1978) Zur zirkadianen Modifikation der pranatal-toxischen Wirkung von Cyclophosphamid. Biol Rundsch 16: 243–248Google Scholar
  25. Sessa A, Desiderio MA, Perin A (1987) Ethanol and poly amine metabolism in adult and fetal tissues: possible implication in fetus damage. Adv Alcohol Subst Abuse 6: 73–85PubMedCrossRefGoogle Scholar
  26. Sturtevant RP, Garber SL (1985) Circadian exposure to ethanol affects the severity of cerebellar cell dysgenesis. Anat Rec 211:187Google Scholar
  27. Sturtevant RP, Garber SL (1986) Chronopharmacology of ethanol: acute and chronic administration in the rat. Annu Rev Chronopharmacol 4: 47–76Google Scholar
  28. Walker AM, Oakes GK, McLanghlin MK, Ehrenkranz RA, Chez RA, Ailing DW (1977) 24-hr rhythms in uterine and umbilical blood flows of conscious pregnant sheep. Gynecol Invest 8: 288–298PubMedCrossRefGoogle Scholar
  29. Walsh SW, Ducsay CA, Novy MJ (1984) Circadian hormonal interactions among the mother, fetus and amniotic fluid. Am J Obstet Gynecol 150: 745–753PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • I. Sauerbier

There are no affiliations available

Personalised recommendations