Skip to main content

Mechanismen der Sekretion des exokrinen Pankreas

  • Conference paper
Ökosystem Darm V
  • 58 Accesses

Zusammenfassung

Die exokrine Zelle des Pankreas ist ein Modellfall für Zellen mit hoher Eiweißsynthese und Sekretion. Durch ihre polare Struktur mit einem basolateralen und einem luminalen Anteil eignet sie sich ideal zur Erforschung grundlegender Sekretionsmechanismen. Diese Einschätzung stammt von George Palade, der für die Klärung der intrazellulären Transport- und Sekretionsmechanismen den Nobel-Preis verliehen bekam [1]. Im folgenden sollen die einzelnen Transportschritte in der Azinus-zelle von der Synthese bis zur Exozytose erläutert werden. Daneben werden die hierfür erforderlichen Schritte der Signaltransduktion zusammengefaßt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Palade G (1975) Intracellular aspects of the process of protein synthesis. Science 189: 347358

    Google Scholar 

  2. Meldolesi J, Jamieson JD, Palade GE (1971) Composition of cellular membranes in the pancreas of guinea pig II. Lipids. J Cell Biol 49: 130–149

    Article  PubMed  CAS  Google Scholar 

  3. Scheele G, Jacoby R, Came T (1980) Mechanism of compartimentation of secretory proteins I. Transport of exocrine pancreatic proteins across microsomal membrane. J Cell Biol 87: 611–628

    Article  PubMed  CAS  Google Scholar 

  4. Pfeffer SR, Rothman JE (1987) Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Ann Rev Biochem 56: 829–852

    Article  PubMed  CAS  Google Scholar 

  5. Brown WJ, Farquhar MG (1984) The mannose-6-phosphate receptor for lysosomal enzymes is concentrated in cis golgi cisternae. Cell 36: 295–307

    Article  PubMed  CAS  Google Scholar 

  6. Jamieson JD, Palade GE (1971) Synthesis, intracellular transport, and discharge of secretory proteins in stimulated pancreatic exocrine cells. J Cell Biol 50: 135–158

    Article  PubMed  CAS  Google Scholar 

  7. Kelly RB (1990) Microtubules, membrane traffic, and cell organization. Cell 61: 5–7

    Article  PubMed  CAS  Google Scholar 

  8. Williams JA, Lee M (1976) Microtubules and pancreatic amylase release by mouse pancreas in vitro. J Cell Biol 71: 795–806

    Article  PubMed  CAS  Google Scholar 

  9. O’Konski MS, Pandol SJ (1990) Effects of caerulein on the apical cytoskeleton of the pancreatic acinar cell. J Clin Invest 86: 1649–1657

    Article  PubMed  Google Scholar 

  10. Brown WJ, Constantinescu E, Farquhar MG (1984) Redistribution of mannose-6-phosphate receptors by tunicamycin and chloroquine. J Cell Biol 99: 320–326

    Article  PubMed  CAS  Google Scholar 

  11. Saluja M, Saluja A, Lerch MM, Steer ML (1991) A plasma protease which is expressed during supramaximal stimulation causes in vitro subcellular redistribution of lysosomal enzymes in rat exocrine pancreas. J Clin Invest 87: 1280–1285

    Article  PubMed  CAS  Google Scholar 

  12. Adler G, Beglinger C, Braun U et al. (1991) Interaction of the cholinergic system and cholecystokinin in the regulation of endogenous and exogenous stimulation of pancreatic secretion in humans. Gastroenterology 100: 537–543

    PubMed  CAS  Google Scholar 

  13. Adler G, Reinshagen M, Koop I et al. (1989) Differential effects of atropine and a cholecystokinin receptor antagonist on pancreatic secretion. Gastroenterology 96: 1158–1164

    PubMed  CAS  Google Scholar 

  14. Berridge ML, Irvine RF (1989) Inositol phosphates and cell ignalling. Nature 341: 197–205

    Article  PubMed  CAS  Google Scholar 

  15. Streb H, Irvine RF, Berridge MG, Schulz I (1983) Release of Ca++ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-triphosphate. Nature 306: 67–69

    Article  PubMed  CAS  Google Scholar 

  16. Gorelick FS, Cohn JA, Freedman SD et al. (1983) Calmodulin-stimulated protein kinase activity from rat pancreas. J Cell Biol 79: 1294–1298

    Article  Google Scholar 

  17. Saluja, AK, Dawra RK, Lerch MM, Steer ML (1992) CCK-JMV-180, an analog of cholecystokinin, releases intracellular calcium from an inositol triphosphate-independent pool in rat pancreatic acini. J Biol Chem 267: 11202–11207

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lerch, M.M., Adler, G. (1993). Mechanismen der Sekretion des exokrinen Pankreas. In: Zeitz, M., Caspary, W.F., Bockemühl, J., Lux, G. (eds) Ökosystem Darm V. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78733-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78733-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57591-7

  • Online ISBN: 978-3-642-78733-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics