Skip to main content

Biogenesis of Neurosecretory Vesicles

  • Conference paper
Glyco-and Cellbiology

Abstract

Neurosecretory vesicles are defined as the vesicles which mediate the usually calcium-dependent, regulated release of signaling molecules in the nervous system. At least two types of neurosecretory vesicles can be distinguished by their structure and content. The first type are the synaptic vesicles of neurons, which mediate the storage and release of classical neurotransmitters (e.g., acetylcholine, glutamate, GABA, and glycine) but lack secretory proteins. Synaptic vesicles have a counterpart in certain endocrine cells, the synaptic-like microvesicles (SLMVs). The second type are the large dense core vesicles of neurons, which mediate the storage and release of neuropeptides. These vesicles are the neuronal equivalent of the secretory granules found in cells capable of regulated protein secretion, notably endocrine cells. (Since large dense cote vesicles are essentially similar, if not identical, to endocrine secretory granules, we shall also use the term “secretory granules” when refering to large dense core vesicles of neurons.) This chapter summarizes recent data obtained in our laboratory concerning the biogenesis of secretory granules from the trans-Golgi network (TGN) and of SLMVs from early endosomes in the neuroendocrine cell line PC12.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberini CM, Bet P, Milstein C, Sitia R (1990) Secretion of immunoglobulin M assembly intermediates in the presence of reducing agents. Nature 347:485–487

    Article  PubMed  CAS  Google Scholar 

  • Barr FA, Leyte A, Mollner S, Pfeuffer T, Tooze SA, Huttner WB (1991) Trimeric G-proteins of the trans-Golgi network are involved in the formation of constitutive secretory vesicles and immature secretory granules. FEBS Lett 294:239–243

    Article  PubMed  CAS  Google Scholar 

  • Bauerfeind R, Huttner WB (1993) Biogenesis of constitutive secretory vesicles, secretory granules and synaptic vesicles. Curr Opinion Cell Biol 5 (in press)

    Google Scholar 

  • Bauerfeind R, Régnier-Vigouroux A, Fiatmark T, Huttner WB (1993) Selective storage of acetylcholine, but not catecholamines, in neuroendocrine synaptic-like microvesicles of early endosomal origin. Neuron (in press)

    Google Scholar 

  • Benedum UM, Lamouroux A, Konecki DS, Rosa P, Hille A, Baeuerle PA, Frank R, Lottspeich F, Mallet J, Huttner WB (1987) The primary structure of human secretogranin I (chromogranin B): comparison with chromogranin A reveals homologous terminal domains and a large intervening variable region. EMBO J 6:1203–1211

    PubMed  CAS  Google Scholar 

  • Braakman I, Helenius J, Helenius A (1992) Manipulating disulfide bond formation and protein folding in the endoplasmic reticulum. EMBO J 11:1717–1722

    PubMed  CAS  Google Scholar 

  • Chanat E, Huttner WB (1991) Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J Cell Biol 115:1505–1519

    Article  PubMed  CAS  Google Scholar 

  • Chanat E, Pimplikar SW, Stinchcombe JC, Huttner WB (1991) What the granins tell us about the formation of secretory granules in neuroendocrine cells. Cell Biophysics 19:85–91

    PubMed  CAS  Google Scholar 

  • Chanat E, Weiß U, Huttner WB, Tooze SA (1993) Reduction of the disulfide bond of chromogranin B (secretogranin I) in the trans-Golgi network causes its missorting to the constitutive secretory pathway. EMBO J 12:2159–2168

    PubMed  CAS  Google Scholar 

  • Donaldson JG, Cassel D, Kahn RA, Klausner RD (1992a) ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein ß-COP to Golgi membranes. Proc Natl Acad Sci USA 89:6408–6412

    Article  PubMed  CAS  Google Scholar 

  • Donaldson JG, Finazzi D, Klausner RD (1992b) Brefeldin A inhibits Golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein. Nature 360:350–352

    Article  PubMed  CAS  Google Scholar 

  • Helms JB, Rothman JE (1992) Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature 360:352–354

    Article  PubMed  CAS  Google Scholar 

  • Huttner WB, Gerdes H-H, Rosa P (1991) Chromogranins/secretogranins — widespread constituents of the secretory granule matrix in endocrine cells and neurons. In: Markers for neural and endocrine cells. Molecular and cell biology, diagnostic applications. M. Gratzl and K. Langley, eds. (Weinheim: VCH), pp 93–131

    Google Scholar 

  • Klausner RD, Donaldson JG, Lippincott-Schwartz J (1992) Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol 116:1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Leyte A, Barr FA, Kehlenbach RH, Huttner WB (1992) Multiple trimeric G-proteins on the trans-Golgi network exert stimulatory and inhibitory effects on secretory vesicle formation. EMBO J 11:4795–4804

    PubMed  CAS  Google Scholar 

  • Miller SG, Carnell L, Moore HPH (1992) Post-Golgi membrane traffic: brefeldin A inhibits export from distal Golgi compartment to the cell surface but not recycling. J Cell Biol 118:267–283

    Article  PubMed  CAS  Google Scholar 

  • Pohl TM, Phillips E, Song K, Gerdes H-H, Huttner WB, Rüther U (1990) The organisation of the mouse chromogranin B (secretogranin I) gene. FEBS Lett 262:219–224

    Article  PubMed  CAS  Google Scholar 

  • Reetz A, Solimena M, Matteoli M, Folli F, Takei K, De Camilli P (1991) GABA and pancreatic β-cells: colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic-like micro vesicles suggests their role in GABA storage and secretion. EMBO J 10:1275–1284

    PubMed  CAS  Google Scholar 

  • Régnier-Vigouroux A, Tooze SA, Huttner WB (1991) Newly synthesized synaptophysin is transported to synaptic-like microvesicles via constitutive secretory vesicles and the plasma membrane. EMBO J 10:3589–3601

    PubMed  Google Scholar 

  • Rosa P, Barr FA, Stinchcombe JC, Binacchi C, Huttner WB (1992) Brefeldin A inhibits the formation of constitutive secretory vesicles and immature secretory granules from the trans- Golgi network. Eur J Cell Biol 59:265–274

    PubMed  CAS  Google Scholar 

  • Rothman JE, Orci L (1992) Molecular dissection of the secretory pathway. Nature 355:409–415

    Article  PubMed  CAS  Google Scholar 

  • Tooze S, Fiatmark T, Tooze J, Huttner WB (1991) Characterization of the immature secretory granule, an intermediate in granule biogenesis. J Cell Biol 115:1491–1503

    Article  PubMed  CAS  Google Scholar 

  • Tooze SA, Chanat E, Tooze J, Huttner WB (1993) Secretory granule formation. In: Peng Loh Y (ed) Mechanisms of intracellular trafficking and processing of proproteins. CRC Press, Boca Raton, pp 157–177

    Google Scholar 

  • Tooze SA, Huttner WB (1990) Cell-free sorting to the regulated and constitutive secretory pathways. Cell 60:837–847

    Article  PubMed  CAS  Google Scholar 

  • Tooze SA, Weiss U, Huttner WB (1990) Requirement for GTP hydrolysis in the formation of secretory vesicles. Nature 347:207–208

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huttner, W.B. et al. (1994). Biogenesis of Neurosecretory Vesicles. In: Wieland, F., Reutter, W. (eds) Glyco-and Cellbiology. Colloquium der Gesellschaft für Biologische Chemie 22.–24. April 1993 in Mosbach/Baden, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78729-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78729-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78731-7

  • Online ISBN: 978-3-642-78729-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics