Skip to main content

The Ionosphere

  • Chapter
The Upper Atmosphere

Abstract

In contrast to the troposphere, the stratosphere, the mesosphere and the thermosphere which are defined by lapse rates of temperature the ionosphere is the region in which sufficient ionization exists to influence the propagation of radio waves. Because of the existence of ions and free electrons, the ionosphere is an electric conductor and refracting medium for radio waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson DN, Haerendel G (1979) The motion of depleted plasma regions in the equatorial ionosphere. J Geophys Res 84: 4251–4256

    Google Scholar 

  • Aso T, Tsuda T, Kato S (1979) Meteor radar observations at Kyoto University. J Atmos Terr Phys 41: 517–525

    Google Scholar 

  • Banks PM, Kockarts G (1973) Aeronomy. A and B. Academic Press, New York

    Google Scholar 

  • Belrose JS (1982) LF propagation: an overview. In: Belorse JS (ed) Medium, long and very long wave propagation. AGARD Conf Proc 305, pp 22–1 to 22–10. Advisory Group for Aerospace Research and Development, Paris

    Google Scholar 

  • Brasseur G, Solomon S (1986) Aeronomy of the middle atmosphere, 2nd edn. Reidel, Dordrecht.

    Google Scholar 

  • CCIR (1986) Propagation in ionized media. Recommendations and reports of the CCIR, 1986, V I, Int Telecom Union, Geneva

    Google Scholar 

  • Chapman S, Lindzen RS (1970) Atmospheric tides. Gordon and Breach, New York Davies K ( 1990 ) Ionospheric radio, P. Peregrinus, London

    Google Scholar 

  • Ducharme ED, Petrie LE, Eyfrig R (1971) A method of predicting the F1 layer critical frequency, Radio Sci 6: 369–377

    Google Scholar 

  • George PL (1971) The global morphology of the quantity. 1Nv dh in the D- and E-regions of the ionosphere. J Atmos Terr Phys 33: 1893–1906

    Google Scholar 

  • Georges TM (1968) HF doppler studies of traveling ionospheric disturbances. J Atmos Terr Phys 30: 735–746

    Google Scholar 

  • Gossard EE, Hooke WH (1975) Waves in the atmosphere. Elsevier, New York

    Google Scholar 

  • Hanson WB, Moffett RJ (1966) Ionization transport effects in the equatorial F region. J Geophys Res 71: 5559–5572

    Google Scholar 

  • Herman JR (1966) Spread F and ionospheric F-region irregularities. Rev Geophys 4:255–299 JATP (1978) J Atmos Ten Phys 40 (8): 879–943

    Google Scholar 

  • Kent GS, Wright RWH (1968) Movements of ionospheric irregularities and ionospheric winds. J Atmos Terr Phys 30: 657–691

    Google Scholar 

  • Kohl H, King JW (1967) Atmospheric winds between 100 and 700 km and their effects on the ionosphere. J Atmos Ten Phys 9: 1045–1062

    Google Scholar 

  • Leftin M (1976) Numerical representation of monthly median critical frequencies of the regular E region (f 0 E). OT Report 76–88, US GPO, Washington, DC

    Google Scholar 

  • Leftin M, Ostrow SM (1969) Numerical maps of fhE s for solar cycle minimum. ESSA Tech Rep ERL124–ITS87, Dept of Commerce, Boulder, CO

    Google Scholar 

  • Leftin M, Ostrow SM, Preston C (1968) Numerical maps of foE for sunspot cycle minimum and maximum. ESSA Tech Rep ERL73–ITS63, US Dept of Commerce, Boulder, CO

    Google Scholar 

  • Matsushita S (1967) Solar quiet and lunar variation fields. In: Matsushita S, Campbell WH (eds) Physics of geomagnetic phenomena, I. Academic Press, New York 302–425

    Google Scholar 

  • Matsushita S, Smith LG (eds) (1975) Special issue on recent advances on the physics and chemistry of the E region. Radio Sci 10: 229–418

    Google Scholar 

  • Muggleton ML (1975) A method of predicting f o E at any time and place. Telecom J 42:413–418 Muldrew DB (1983) Alouette-ISIS radio wave studies of the cleft, the auroral zone, and the main trough and of their associated irregularities. Radio Sci 18: 1140–1150

    Google Scholar 

  • Rosich RK, Jones WB (1973) The numerical representation of the critical frequency of the F1 region of the ionosphere, OT Report 73–22. US GPO, Washington, DC

    Google Scholar 

  • Rush CM, Miller D, Gibbs J (1974) The relative daily variability of f 0 F2 and hmFF2 and their implications for HF radio propagation. Radio Sci 9: 749–756

    Google Scholar 

  • Rush CM, PoKempner M, Anderson DN, Perry J, Stewart FG, Reasoner R (1984) Maps of f o F2 derived from observations and theoretical data, Radio Sci 19: 1083–1097

    Google Scholar 

  • Smith EK (1978) Temperate zone sporadic E maps. Radio Sci 13: 571–575

    Google Scholar 

  • Smith EK, Matsushita S (eds) (1962) Ionospheric sporadic E. MacMillan, New York

    Google Scholar 

  • Wakai N (1971) Study on the nighttime E region and its effects on the radio wave propagation. J Radio Res Lab 18: 245–348

    Google Scholar 

  • Whitehead JD (1970) Production and prediction of sporadic E. Rev Geophys Space Phys 8: 65–144

    Google Scholar 

  • Aitchison GJ, Thomson JH, Weekes K (1959) Some deductions of ionospheric information from the observations of emissions from satellite 1957a2 — II. Experimental procedure and results. J Atmos Terr Phys 14: 244–248

    Google Scholar 

  • Al’pert JaL (1963) Method to investigate the ionosphere by means of artificial satellites. Uspekhi fiz. nauk 64:13—, 1958 (cited with translated title from Al’pert et al. Geomagnetism and aeronomy 3: 6–17

    Google Scholar 

  • Al’pert JaL (1965) Some results of ionospheric investigations by means of coherent radiowaves emitted by satellites. Space Sci Rev 4: 5–34

    Google Scholar 

  • Al’pert JaL (1976) On ionospheric investigations by coherent radiowaves emitted from artificial earth satellites. Space Sci Rev 18: 551–602

    Google Scholar 

  • Bauer SJ, Daniels FB (1958) Ionospheric parameters deduced from the Faraday rotation of lunar radio reflections. J Geophys Res 63: 439–442

    Google Scholar 

  • Bowhill SA (1958) The Faraday-rotation rate of a satellite radio signal. J Atmos Terr Phys 13: 175–176

    Google Scholar 

  • Browne IC, Evans JV, Hargreaves JK, Murray WAS (1956) Radio echos from the moon. Proc Roy Soc Lond B69: 901

    Google Scholar 

  • Davies K (1980) Recent progress in satellite Radio Beacon Studies with emphasis on the ATS-6 Radio Beacon experiment (Review). Space Sci Rev 25: 357–430

    Google Scholar 

  • Evans JV (1956) The measurement of the electron content of the ionosphere by the lunar radio echo technique. Proc Phys Soc Lond B69:953–955

    Google Scholar 

  • Evans JV (1977) Satellite beacon contributions to studies of the structure of the ionosphere. Rev Geophys Space Phys 15: 325–350

    Google Scholar 

  • Garriott OK (1960a) The determination of ionospheric electron content and distribution from satellite observations part 1. Theory of the analysis. J Geophys Res 65: 1139–1150

    Google Scholar 

  • Garriott OK (1960b) The determination of ionospheric electron content and distribution from satellite observations part 2. Results of the analysis. J Geophys Res 65: 1151–1157

    Google Scholar 

  • Garriott OK, Gordon Little C (1960c) The use of geostationary satellites for the study of ionospheric electron content and ionospheric radio-wave propagation. J Geophys Res 65: 2025–2027

    Google Scholar 

  • Garriott OK, Nichol AW (1961) Ionospheric information deduced from the Doppler shifts of harmonic frequencies from earth satellites. J atmos ten Phys 22: 50–63

    Google Scholar 

  • Hargreaves JK (1970) ATS-F: observational opportunities. Proc. Symp. on the Future Application of Satellite Beacon Experiments Dieminger W, Hartmann GK (eds) Max-Planck-Institute for Aeronomy, Lindau/Harz, FRG

    Google Scholar 

  • Hibberd FH (1958) The effect of the ionosphere on the Doppler shift of radio signals from an artificial satellite. J Atmos Ten Phys 12: 338–340

    Google Scholar 

  • Klobuchar JA (1975) A first-order, worldwide, ionospheric time delay algorithm. Report AFCRL-TR75–0502, ADA018862, Boston MA, USA

    Google Scholar 

  • Leitinger R, Putz E (1978) Die Auswertung von Differenz-Doppler-Messungen an den Signalen von Navigationssatelliten. Techn Report, Universität Graz, Austria

    Google Scholar 

  • Leitinger R, Schmidt G, Tauriainen A (1975) An evaluation method combining the Differential Doppler measurements from two stations that enables the calculation of the electron content of the ionosphere. J Geophys (Zs Geophysik) 41: 201–213

    Google Scholar 

  • Leitinger R, Putz E, Hartmann G, Degenhardt W, Hedberg A, Ranta A (1981) Total electron content in the polar region. In: Sounding rocket program aeronomy project: Energy Budget Campaign 1980 experiment summary Offermann D, Thrane EV (eds) = BMFT-FB-W 81–052, pp. 81–94, Bonn, Germany

    Google Scholar 

  • Leitinger R, Putz E, Hartmann GK (1985) Ein ungewöhnlicher Magnetsturm-Effekt im Elektroneninhalt der Ionosphäre. Kleinheubacher Berichte 29: 571–580

    Google Scholar 

  • Mendonça F de (1962) Ionospheric electron content and variations measured by Doppler shifts in satellite transmissions. J Geophys Res 67: 2315–2337

    Google Scholar 

  • Titheridge JE (1972) Determination of ionospheric electron content from the Faraday rotation of geostationary satellite signals. Planet Space Sci 20: 353–369

    Google Scholar 

  • Rawer K (1964) Erforschung der Ionosphäre mit Radiowellen von Satelliten und Raketen. Phasen-Verfahren. Space Sci Rev 3: 380–432

    Google Scholar 

  • Ross WJ (1959) The determination of ionospheric electron content from satellite Doppler measurements. J Geophys Res 65:2601–2606/2607–2615

    Google Scholar 

  • Seddon C (1953) Propagation measurements in the ionosphere with the aid of rockets. J Geophys Res 58: 323–335

    Google Scholar 

  • Weekes K (1958) On the interpretation of the Doppler effect from senders in an artificial satellite. J Atmos Terr Phys 12: 335

    Google Scholar 

  • Anderson DN (1973a) A theoretical study of the ionospheric F region equatorial anomaly–I. Theory Planet Space Sci 21: 409–419

    Google Scholar 

  • Anderson DN (1973b) A theoretical study of the ionospheric F region equatorial anomaly–II Results in the American and Asian sectors. Planet Space Sci 21: 421–442

    Google Scholar 

  • Anderson DN, Mendillo M, Herniter B (1987) A semi-empirical low-latitude ionospheric model. Radio Sci 22: 292–306

    Google Scholar 

  • Appleton EV, Beynon WJG (1947) The application of ionospheric data to radio communications problems II. Proc Phys Soc 59: 58–76

    Google Scholar 

  • Banks PM, Kockarts G (1973) Aeronomy A and B. Academic Press, New York

    Google Scholar 

  • Barghausen AF, Finney JW, Proctor LL, Schultz LD (1969) Predicting long-term operational parameters of high-frequency sky-wave telecommunications systems. ESSA Tech Rep ERL110–ITS78, US GPO, Washington, DC

    Google Scholar 

  • Basu Sa, Mackenzie E, Basu Su (1988) Ionospheric constraints on VHF/UHF communication links during solar maximum and solar minimum periods. Radio Sci 23: 363–378

    Google Scholar 

  • Bent RB, Lepofsky JR, Llewellyn SK, Schmid PG (1978) Ionospheric range-rate effects in satellite-to-satellite tracking. In: Soicher H(ed) Operational modeling of the aerospace propagation environment, AGARD Conf Proc 238, Advisory group on Aerospace Research and Development, Paris 9–1 to 9–15

    Google Scholar 

  • Besprozvannaya AS, Krupitskaya TM, Makarova LM, Uvarov VM, Chemin KE, Schirochkova AV (1982) Calculating the space-time distribution of the ionization maximum of the polar F2 layer. Geomagn Aeronom 22: 323–328

    Google Scholar 

  • Bradley PA (1976) A new computer-based method of HF sky-wave signal prediction using vertical-incidence ionosonde measurements. In: Blackband WT (ed) Radio systems and the ionosphere, AGARD Conf Proc 173, Advisory group on Aerospace Research and Development, Paris, pp 11–1 to 11–16.

    Google Scholar 

  • Bradley PA, Dudeney JR (1973) A simple model for the vertical distribution of electron concentration in the ionosphere J Atmos Ten Phys 35: 2131–2146

    Google Scholar 

  • Brasseur G, Solomon S (1986) Aeronomy of the middle atmosphere 2nd ed. Reidel Dordrecht

    Google Scholar 

  • CCIR (1986) Propagation in ionized media. Recommendations and reports of the CCIR, 1986, V I, Int Telecom Union, Geneva

    Google Scholar 

  • Chiu YT (1975) An improved phenomenological model of ionospheric density. J Atmos Ten Phys 37: 1563–1570

    Google Scholar 

  • Davies K (1990) Ionospheric radio P. Peregrinus, London

    Google Scholar 

  • Foppiano M, Bradley PA (1985) Morphology of background auroral absorption. J Atmos Terr Phys 47: 663–674

    Google Scholar 

  • George PL (1971) The global morphology of the quantity f Nv dh in the D and E regions of the ionosphere. J Atmos Ten Phys 33: 1893–1906

    Google Scholar 

  • George PL, Bradley PA (1974) A new method of predicting the ionospheric absorption of high frequency waves at oblique incidence. Telecom J 41: 307–312

    Google Scholar 

  • Hedin AE (1987) MSIS-86 thermospheric model. J Geophys Res 92: 4649–4662

    Google Scholar 

  • Jones WB, Gallet RM (1965) Representation of diurnal and geographic variations of ionospheric data by numerical methods. Telecom J 32: 18–28

    Google Scholar 

  • Jones WB, Obitts DL (1970) Global representation of the annual and solar cycle variation of fF2 monthly median 1954–1958. OT Report 3, Inst Telecom Sci Boulder, CO

    Google Scholar 

  • Jones WB, Graham RP, Leftin M (1969) Advances in ionospheric mapping by numerical methods. ESSA Tech Rep ERL 107-ITS 75, US GPO, Washington, DC

    Google Scholar 

  • Jones WB, Gallet RM, Leftin M, Stewart FG (1973) Analysis and representation of the daily departures of the fF2 from the monthly median. OT Report 73–12, US Dept of Commerce, Boulder, CO

    Google Scholar 

  • Kohl H, King JW (1967) Atmospheric winds between 100 and 700 km and their effects on the ionosphere. J Atmos Terr Phys 29: 1045–1062

    Google Scholar 

  • Klobuchar JA (1978) Ionospheric effects on satellite navigation and air traffic control systems. AGARD Lecture Series 93 Advisory group on Aerospace Research and Development, Paris, 7–1 to 7–16

    Google Scholar 

  • Leftin M (1976) Numerical representation of monthly median critical frequencies of the regular E region (f o E). OT Report 76–88, US GPO, Washington, DC

    Google Scholar 

  • Nisbet JS (1971) On the construction and use of a simple ionospheric model. Radio Sci 6: 437–464

    Google Scholar 

  • Paul AK (1978) Temporal and spatial distribution of the spectral components of f o F2. J Atmos Ten Phys 40: 135–144

    Google Scholar 

  • Rawer K (1981) International reference ionosphere, IRI-79. Report UAG-82, World Data Center-A, Boulder, CO

    Google Scholar 

  • Rees D, Fuller-Rowell TJ, Gordon R, Smith MF, Maynard NC, Heppner JP, Spencer NW, Wharton L, Hays PB, Killeen TL (1986) A theoretical and empirical study of the response of the high latitude thermosphere to the sense of the “y” component of the interplanetary magnetic field. Planet Space Sci 34: 1–40

    Google Scholar 

  • Rino CL, Owen J (1984) Numerical simulations of intensity scintillation using power law phase screen mode. Radio Sci 19: 891–908

    Google Scholar 

  • Roble RG, Ridley EC, Richmond AD, Dickinson RE (1988) A coupled thermosphere/ionosphere general circulation model. Geophys Res Lett 15: 1325–1328

    Google Scholar 

  • Rosich RK, Jones WB (1973) The numerical representation of the critical frequency of the F1 region of the ionosphere. OT Report 73–22, US GPO, Washington, DC

    Google Scholar 

  • Rush CM (1978) An ionospheric observation network for use in short-term propagation predictions. Telecom J 43: 544–549

    Google Scholar 

  • Rush CM, Miller D, Gibbs J (1974) The relative daily variability of foF2 and hmF2 and their implications for HF radio propagation. Radio Sci 9: 749–756

    Google Scholar 

  • Rush CM, Pokempner M, Andersen DN, Perry J, Stewart FG, Reasoner R (1984) Maps of f o F2 derived from observations and theoretical data. Radio Sci 19: 1083–1097

    Google Scholar 

  • Sojka JJ, Schunk RW (1985) A theoretical study of the global F region for June solstice, solar maximum and low magnetic activity. J Geophys Res 90: 5285–5298

    Google Scholar 

  • Tacione TF, Kroehl HW, Creiger R, Freeman JW, Wolf RA, Spiro RW, Miner RV, Shade JW, Hausman BA (1988) New ionospheric and magnetospheric specification models. Radio Sci 23: 211–222

    Google Scholar 

  • Agy V (ed) (1970) Ionospheric forecasting. AGARD Conf Proc 49 Advisory Group for Aerospace Research and Development, Paris

    Google Scholar 

  • Baker DM, Davies K (1966) Solar flare effects and the relaxation time of the Ionosphere. J Geophys Res 71: 2840–2842

    Google Scholar 

  • Belrose JS, Cetiner E (1962) Measurement of electron densities in the ionospheric D-region at the time of a 2+ solar flare. Nature 195: 688–690

    Google Scholar 

  • Bibl K (1963) Comparison of solar flare effects in the D and E regions of the ionosphere. In: Gassmann GJ (ed) effect of disturbances of solar origin on communications, AGARDograph 59. Macmillan, New York, pp 109–118

    Google Scholar 

  • Bleiweiss MP, Hildebrand VE, Hill JR (1973) A D-region model which accounts for quiet and disturbed VLF propagation phenomena. Tech Report TRI868, Naval Electronics Lab Center, San Diego, California

    Google Scholar 

  • Davies K (1980) Recent progress in satellite radio beacon studies with particular emphasis on the ATS-6 radio beacon experiment. Space Sci Rev 25: 357–430

    Google Scholar 

  • Deshpande SD. Subrahmanyam CV, Mitra AP (1972) Ionospheric effects of solar flares — I. The statistical relationship between X-rays and SIDs. J Atoms Ten Phys 34: 211–227

    Google Scholar 

  • Donnelly RF (1969) Energetic X-ray and extreme ultraviolet flashes of solar flares. Astrophys J 158: L165 - L167

    Google Scholar 

  • Donnelly RF (1971) Extreme ultraviolet flashes of solar flares observed via sudden frequency deviations: experimental results. Sol Phys 20: 188–203

    Google Scholar 

  • Gassmann GJ (1963) The effect of disturbances of solar origin on tele-communications. AGARDograph 59, Macmillan, New York

    Google Scholar 

  • Jones TB (1971) VLF phase anomalies due to a solar X-ray flare. J Atmos Ten Phys 33: 963–965

    Google Scholar 

  • Kildahl K (1980) Frequency of class M and X flares by sunspot class. In: Donnelly RF (ed) Solarterristrial predictions Proceedings III, C-166 to C-172 US GPO, Washington, DC

    Google Scholar 

  • Lawrence RS, Little CG, Chivers HJA (1964) A survey of ionospheric effects upon earth-space radio propagation. Proc IEEE 52: 4–27

    Google Scholar 

  • Lincoln JV (1964) The listing of sudden ionospheric disturbances. Planet Space Sci 12: 419–434

    Google Scholar 

  • Mcintosh P, Dryer M (ed) (1972) Solar activity observations and predictions. MIT Press, Cambridge, Massachusetts

    Google Scholar 

  • Mendillo M, Evans JV (1974) Incoherent scatter observations of the ionospheric response to a large solar flare. Radio Sci 9: 197–203

    Google Scholar 

  • Mitra AP (1974) Ionospheric effects of solar flares. Reidel, Dordrecht

    Google Scholar 

  • Munro GH, Knecht RW, Davies K (1961) Possible solar flare effects in the F-region of the ionosphere. Nature 192: 347–348

    Google Scholar 

  • Ohshio M (1964) Solar flare effect on geomagnetic variation. J Radio Res Lab 11: 377–491

    Google Scholar 

  • Ohshio M (1971) Negative sudden phase anomaly. Nature (Physical Science) 229: 239–240

    Google Scholar 

  • Sao K, Yamashita M, Tanahashi S, Jindoh H, Ohta K (1970) Sudden enhancements (SEA) and decreases ( SDA) of atmospherics. J Atmos Terr Phys 32: 1567–1576

    Google Scholar 

  • SESC (1988) SESC glossary of solar-terrestrial terms. NOAA/ERL/SEL, Boulder, CO Solar Geophysical Data 489 ( 1985 ) Coffey HE (ed) NOAA/NGDC, Boulder, CO

    Google Scholar 

  • Stonehocker GH (1970) Advanced telecommunication forecasting. In: Agy, V. (ed) Ionospheric forecasting, AGARD Conf Proc 49, Advisory Group of Aerospace Research and Development, Paris 27–1 to 27–12

    Google Scholar 

  • Anderson DN (1976) Modelling the midlatitude F-region ionospheric storm using east-west drift and a meridional wind. Planet Space Sci 24: 69–77

    Google Scholar 

  • Appleton EV, Ingram LJ (1935) Magnetic storms and upper-atmospheric ionization. Nature 136: 548549

    Google Scholar 

  • Batista IS, de Paula ER, Abdu MA, Trivedi NB, Greenspan ME (1991) Ionospheric-effects of the

    Google Scholar 

  • March 13, 1989, magnetic storm at low and equatorial latitudes. J Geophys Res 96:13 943–13

    Google Scholar 

  • Evans JV (1970) The June 1965 magnetic storm:Millstone Hill observations. Atmos J Ten Phys 32: 1629–1640

    Google Scholar 

  • Hajkowicz LA (1991) Global onset and propagation of large-scale traveling ionospheric disturbances as a result of the great storm of 13 March 1989 Planet Space Sci 39: 583–593

    Google Scholar 

  • Hibberd FH, Ross WJ (1967) Variations in total electron content and other ionospheric parameters associated with magnetic storms. J Geophys Res 72: 5331–5337

    Google Scholar 

  • Lakshmi DR, Rao BCN, Jain AR, Geol MK, Reddy BM (1991) Response of equatorial and low latitude F-region to the great magnetic storm of March 13 1989. Ann Geophysicae, 9: 286–290

    Google Scholar 

  • Matsushita S (1959) A study of the morphology of ionospheric storms. J Geophys Res 64: 305–321

    Google Scholar 

  • Matuura N (1972) Theoretical models of ionospheric storms. Space Sci. Rev 13: 124–189

    Google Scholar 

  • Mendillo M (1971) Ionospheric total electron content behavior during geomagnetic storms. Nature 234: 23–24

    Google Scholar 

  • Mendillo M (1973) A study of the relationship between geomagnetic storms and ionospheric disturbances at mid-latitudes Planet Space Sci 21: 349–359

    Google Scholar 

  • Mendillo M, Klobuchar JA (1975) Investigations of the ionospheric F2-region using multistation total electron content observations. J Geophys Res 80: 643–650

    Google Scholar 

  • Mendillo M, He X-Q, Rishbeth H (1992) How the effects of winds and electric fields in F2-layer storms vary with latitude and longitude: theoretical study. Planet Space Sci 40: 595–606

    Google Scholar 

  • Nakata Y (1966) Radio Sci 1: 1145

    Google Scholar 

  • Prolss G (1987) Storm-induced changes in the thermospheric composition at middle latitudes. Planet Space Sci 35: 807–811

    Google Scholar 

  • Prölss GW, Brace LH, Mayr HG, Carignan GR, Killeen TL, Klobuchar JA (1991) Ionospheric storm effects at subauroral latitudes: case study. J Geophys Res 96: 1275–1288

    Google Scholar 

  • Rajaram G, Rastogi RG, (1969) A synoptic study of the disturbed ionosphere during IGY-IGC-(1) the Asian zone. Ann Geophys 25: 795–805

    Google Scholar 

  • Rishbeth H (1989) F-region storms and thermospheric circulation In: Sandholt PE, Egeland A (eds): Electromagnetic coupling in the polar clefts and caps, 393–406, Kluwer Academic Publishers

    Google Scholar 

  • Rishbeth H, Fuller-Rowell TJ, Rodger AS (1987) F-layer storms and thermospheric composition. Phys Scrip 36: 327–336

    Google Scholar 

  • Sojka JJ, Schunk R (1984) A theoretical F region study of ion compositional and, temperature variations in response to magnetospheric storm inputs. J Geophys Res 89: 2348–2358

    Google Scholar 

  • Tanaka T, Hirao K (1973) Effects of an electric field on the dynamical behavior of the ionospheres and its application to the storm time disturbance of the F-layer. J Atmos Ten Phys 35: 1443–1452

    Google Scholar 

  • Titheridge JE, Andrews MK (1967) Changes in the topside ionosphere during a large magnetic storm Planet Space Sci 15: 1157–1167

    Google Scholar 

  • Yeh KC, Lin KH, Conkright RO (1992) The global behavior of the March 1989 ionospheric storm, Canadian J Physics 70: 532–543

    Google Scholar 

  • Aarons J (1985) Construction of a model of equatorial scintillation intensity. Radio Sci 20: 397–402

    Google Scholar 

  • Basu S, Basu Su (1980) Modelling of equatorial phase and amplitude scintillations from OGO-6 and AE irregularity data. COSPAR Sym Ser 8: 187–200

    Google Scholar 

  • Basu S, Basu Su, Stubbe P, Kopka H, Waaramaa J (1987) Daytime scintillations induced by high power HF waves at Tromso, Norway. J Geophys Res 92: 11149–11157

    Google Scholar 

  • Basu S, MacKenzie E, Basu Su (1988) Ionospheric constraints on VHF/UHF communications links during solar maximum and minimum periods. Radio Sci. 23: 363–378

    Google Scholar 

  • Davies K, Whitehead JD (1977) A radio lens in the ionosphere. J Atmos Terr Phys 39: 383–387

    Google Scholar 

  • Fang DJ, Liu CH (1983) A morphological study of gigahertz scintillations in the Asia region. Radio Sci 18: 241–252

    Google Scholar 

  • Fejer BG, Kelley MC (1980) Ionospheric irregularities. Rev Geophys 18: 401–454

    Google Scholar 

  • Franke SJ, Liu CH, McClure JP (1984) Interpretation and modelling of quasiperiodic diffraction patterns observed in equatorial VHF scintillation due to plasma bubbles. J Geophys Res 89: 10891–10902

    Google Scholar 

  • Kelley MC, McClure JP (1981) Equatorial spread-F, a review of recent experimental results. J Atmos Terr Phys 43: 427–436

    Google Scholar 

  • Nakagami M (1960) Statistical methods. In: Hoffman WC (ed) Radio wave propagation, Pergamon New York, pp 3–36

    Google Scholar 

  • Rino CL, Tsunoda RT, Petriceks J, Livingston RC, Kelley MC, Baker KD (1981) Simultaneous rocket-borne beacon and in situ measurements of equatorial spread-F — intermediate wavelength results. J Geophys Res 86: 2411–2420

    Google Scholar 

  • Secan JA, Fremouw EJ, Robins RE (1987) A review of recent improvements to the WBMOD ionospheric scintillation model. In: Goodman JM, Klobuchar JA, Joiner RG, Soicher H (eds) The effect of the ionosphere on communication, navigation and surveillance systems. Naval Research Laboratory, Washington, DC pp 607–617

    Google Scholar 

  • Tyagi TR, Yeh KC, Tauriainen A, Soicher H (1982) The electron content and its variations at Natal, Brazil. J Geophys Res 87: 2525–2532

    Google Scholar 

  • Whitney HE, Aarons J, Allen RC, Seemann DR (1972) Estimation of the cumulative amplitude probability distribution function of ionospheric scintillations. Radia Sci 7: 1095–1104

    Google Scholar 

  • Yeh KC, Liu CH (1982) Radio wave scintillations in the ionosphere. Proc IEEE 70: 324–360

    Google Scholar 

  • Arnold F (1981) Structure and composition of the middle atmosphere ionized component, World Data Center A for Solar-Terrestrial Physics, Report UAG-82, Boulder, pp 19–25

    Google Scholar 

  • Benson RF, Bauer P, Brace LH, Carlson HC, Hagan J, Hanson WB, Hoegy WR, Torr MR, Wand RH, Wickwar VB (1977) Electron and ion temperature — a comparison of ground-based incoherent scatter and AE-C satellite measurements. J Geophys Res 82: 36–42

    Google Scholar 

  • Bilitza D (198la) Electron density in the D-region as given by the International Reference Ionosphere.

    Google Scholar 

  • World Data Center A for Solar-Terrestrial Physics, Report UAG-82, Boulder pp 7–10

    Google Scholar 

  • Bilitza D (1981b) Models of ionospheric electron and ion temperature, World Data Center A for solar terrestrial physics, Report UAG-82, Boulder pp 11–16

    Google Scholar 

  • Bilitza D (1982) New descriptive temperature model. Adv Space Res 2 (10): 237–245

    Google Scholar 

  • Bilitza D (1984) Comparison between the IRI ion composition and incoherent scatter measurements and theoretical values. Adv Space Res 4 (1): 107–109

    Google Scholar 

  • Bilitza D (1985a) Electron density in the equatorial topside, Adv Space Res 5 (10): 15–19

    Google Scholar 

  • Bilitza D (1985b) Implementation of the new electron temperature model in IRI, Adv Space Res 5 (10): 117–121

    Google Scholar 

  • Bilitzia D (1986) International Reference Ionosphere: recent development, Radio Sci 21: 343–346

    Google Scholar 

  • Bilitza D (ed) (1990) International Reference Ionosphere 1990, National Space Science Data Center, NSSDC 90–22, Greenbelt, Maryland

    Google Scholar 

  • Bilitza D, Hoegy WR, (1990) Solar activity variation of ionospheric plasma temperatures. Adv Space Res 10 (8): 81–90

    Google Scholar 

  • Bilitza D, Sheikh NM, Eyfrig R (1979) A global model for the height of the F2-peak using M3000 values from the CCIR. Telecomm J 46: 549–553

    Google Scholar 

  • Bilitza D, Brace LH, Theis RF (1985) Modeling of ionospheric temperature profiles. Adv Space Res 5 (7): 53–58

    Google Scholar 

  • Bilitza D, Rawer K, Pallaschke S, Rush CM, Matuura N, Hoegy WR (1987) Progress in modeling the ionospheric peak and topside electron density. Adv Space Res 7 (6): 5–12

    Google Scholar 

  • Booker HC (1977) Fitting of multi-region ionospheric profiles of electron density by a single analytic function of height. J Atmos Terr Phys 39: 619–623

    Google Scholar 

  • Brace LH, Theis RF (1978) An empirical model of the interrelationship of electron temperature and density in the daytime thermosphere at solar minimum. Geophys Res Lett 5: 275–278

    Google Scholar 

  • Brace LH, Theis RF (1981) Global empirical models of ionospheric electron temperature in the upper F-region and plasmasphere based on in-situ measurements from Atmosphere Explorer C, ISIS-1 and ISIS-2 satellites. J Atmos Terr Phys 43: 1317–1343

    Google Scholar 

  • CCIR (1967) Comité Consultatif International des Radiocommunications. Reports 340, 340–2 and later supplements, Geneve

    Google Scholar 

  • CCIR (1973) Comité Consultatif International des Radiocommunications. Report 252–2 and later supplements, Geneve

    Google Scholar 

  • CIRA (1972) COSPAR International Reference Atmosphere 1972 Akademie Verlag, Berlin

    Google Scholar 

  • Danilov AD, Semenov VK (1978) Relative ion composition model at midlatitudes. J Atmos Ten Phys 40: 1093–1102

    Google Scholar 

  • Davies K (1987) Report of URSI Working Group G5 on Mapping of Characteristics at the Peak of the F2-layer, URSI Inf Bull 243: 93–96

    Google Scholar 

  • Demars HG, Schunk RW (1987) Temperature anisotropies in the terrestrial ionosphere and plasmasphere. Rev Geophys 25: 1659–1679

    Google Scholar 

  • Ducharme ED, Petrie LE, Eyfrig R (1971) A method for predicting the F 1 layer critical frequency. Radio Sci 6: 369–378

    Google Scholar 

  • Ducharme ED, Petrie LE, Eyfrig R (1973) A method for predicting the F1 layer critical frequency based on Zurich smoothed sunspot number. Radio Sci 8: 837–839

    Google Scholar 

  • Evans W (1973) Seasonal and sunspot cycle variation of F region electron temperature and protonospheric heat fluxes. J Geophys Res 78: 2344–2349

    Google Scholar 

  • Fuller-Rowell TJ, Rees D, Quegan S, Moffett RJ, Bailey GJ (1987) Interactions between neutral thermospheric composition and the polar ionosphere — thermosphere model. J Geophys Res 92: 7744–7748

    Google Scholar 

  • Gulyaeva TL (1987) Progress in ionospheric informatics based on electron density profile analysis of ionograms. Adv Space Res 7 (6): 39–48

    Google Scholar 

  • Kazimirovsky ES, Zhovty EI, Chernigovskaya MA (1985) Modeling of ionospheric drifts in view of IRI. Adv Space Res 5(7):95–96 and 109–112

    Google Scholar 

  • Kopp E (1984) Ion composition in the D- and lower E-regions with particular emphasis on cluster ions. World Data Center A for Solar-Terrestrial Physics, Report UAG-90, Boulder, pp 140–149

    Google Scholar 

  • Kutiev I, Marinov P, Serafimov KB (1984) An approximation of the height of the O+–H+ transition level for use in IRI. Adv Space Res 4 (1): 119–121

    Google Scholar 

  • Lejeune G, Waldteufel P (1970) Ann Géophys 26: 223–227

    Google Scholar 

  • Llewellyn SK, Bent RB (1973) Documentation and description of the Bent ionospheric model. Air force Geophysics Laboratory, Report AFCRL-TR-73–0657, Hanscom AFB

    Google Scholar 

  • Massachusetts Matuura N, Kotaki M, Miyazaki S, Sagawa E, Iwamoto I (1981) ISS-b experimental results on global distribution of ionospheric parameters and thunderstorm activity. Acta Astronaut 8: 527–548

    Google Scholar 

  • McNamara LF (1984) Prediction of total electron content using the International Reference Ionosphere. Adv Space Res 4 (1): 25–50

    Google Scholar 

  • Mechtly EA, Bilitza D (1974) Models of D-region electron concentrations, Institut fir physikalische Weltraumforschung, Report IPW-WB I, Freiburg, FRG

    Google Scholar 

  • Muggleton (1975) see Davies references

    Google Scholar 

  • Mumminghoff DE (1979) Ion and electron temperatures in the topside ionosphere. University of Illinois, Aeronomy Report 86, Urbana

    Google Scholar 

  • Philbrick CR, Bhavnani KH (1983) F-region ion composition modeling. Adv Space Res 2 (10): 253–257

    Google Scholar 

  • Philbrick CR, Laemmerzahl P, Neske E, Dumbs A (1984) Comparison between plasma densities measured with the AEROS-b and S3–1 satellites and the IRI model. World Data Center A for Solar-Terrestrial Physics, Report UAG-90, Boulder, pp 62–67

    Google Scholar 

  • Rawer K (1963) In: Landmark B (ed) Meteorological and astronomical influences on radio wave propagation. Academic Press, New York, pp 221–250

    Google Scholar 

  • Rawer K (1984a) Modelling of neutral and ionized atmospheres. In: Encyclopedia of Physics, volume 49/7. Springer Berlin Heidelberg New York, pp 223–535

    Google Scholar 

  • Rawer K (1984b) New description of the electron density profile. Adv Space Res 4 (1): 11–15

    Google Scholar 

  • Rawer K (1987) Joint analytical profile of electron density through the whole ionosphere. Adv Space Res 7 (6): 25–33

    Google Scholar 

  • Rawer K (1988) Synthesis of ionospheric electron density profiles with Epstein functions. Adv Space Res 8 (4): 191–200

    Google Scholar 

  • Rawer K, Ramakrishnan S, Bilitza D (1978a) International Reference Ionosphere 1978. International Union of Radio Science, Special Report, Brussels, Belgium

    Google Scholar 

  • Rawer K, Bilitza D, Ramakrishnan S (1978b) Goals and status of the International References Ionosphere. Rev Geophys 16: 177–181

    Google Scholar 

  • Rawer K, Bilitza D, Ramakrishnan S, Sheikh MN (1978c) Intentions and build-up of the International Reference Ionosphere. In: Operational modeling of the aerospace propagation environment. AGARD-CRP-238 Paris pp 6. 1–6. 10

    Google Scholar 

  • Rawer K (chairman), Lincoln JV, Conkright RO, (eds) (1981) International Reference Ionosphere-IRI 79. World Data Center A for Solar-Terrestrial Physics, Report UAG-82, Boulder

    Google Scholar 

  • Rawer K, Bilitza D, Gulyaeva TL (1985) New formulas for the IRI electron density profile in the topside and middle ionosphere. Adv Space Res 5 (7): 3–12

    Google Scholar 

  • Roble RG, Hastings JT (1977) Thermal response properties of the Earth’s ionospheric plasma. Planet Space Sci 25: 217–231

    Google Scholar 

  • Roble RG, Killeen TL, Spencer NW, Heelis RA, Reiff PH, Winnigham JD (1988) Thermospheric dynamics during November 21–22, 1981: Dynamics Explorer measurements and thermospheric general circulation model predictions. J Geophys Res 93: 209–225

    Google Scholar 

  • Rush et al. (1984) see Davies references Rush CM, Fox M, Bilitza D, Davies K, McNamara L, Stewart FG, PoKempner M (1989) Ionospheric mapping - An update of foF2 coefficients. Telecomm J 56:179–182

    Google Scholar 

  • Rycroft MJ, Jones IR (1985) modelling the plasmasphere for the International Reference Ionosphere. Adv Space Res 5(10):21–27

    Google Scholar 

  • Rycroft MJ, Jones IR (1987) A suggested model for the IRI plasmaspheric distribution. Adv Space Res 7 (6): 13–22

    Google Scholar 

  • Schunk RW, Nagy AF (1978) Electron temperatures in the F region of the ionosphere: theory and observation. Rev Geophys 16: 355–399

    Google Scholar 

  • Schunk RW, Sojka JJ, Bowline MD (1986) Theoretical study of the electron temperature in the high- latitude ionosphere for solar maximum and winter conditions. J Geophys Res 91: 12041–12054

    Google Scholar 

  • Serafimov KB, Serafimova MK, Ramanamurty YV, Rawer K (1985) A note on the use of absorption measurements for improving the IRI electron density distribution in the lower ionosphere. Adv Space Res 5 (10): 99–102

    Google Scholar 

  • Shimazaki T (1955) World-wide daily variability in the height of the maximum electron density of the ionospheric F2 layer. J Radio Res Lab (Jpn) 2: 84–97

    Google Scholar 

  • Sojka JJ, Raitt WJ, Schunk RW (1981) Plasma density features associated with strong convection in the winter high-latitude F-region. J Geophys Res 86: 6968–6976

    Google Scholar 

  • Spenner K, Plugge R (1979) Empirical model of global electron temperature distribution between 300 and 700 km based on data from AEROS-A. J Geophys 46: 43–56

    Google Scholar 

  • Bernhardt PA (1982) Plasma, fluid irregularities in ionospheric holes. J Geophys Res 87: 7539–7549

    Google Scholar 

  • Bernhardt PA (1987) A critical comparison of ionospheric depletion chemicals. J Geophys Res 92: 4617–4628

    Google Scholar 

  • Bernhardt PA, Duncan LM (1987) The theory of ionospheric foculed heating. J Atmos Terr Phys 49: 1107–1117

    Google Scholar 

  • Bernhardt PA, Klobuchar JA, Villard OG, Simpson R, Troster JG, Mendillo M, Reisert JM (1979) The great ionospheric hole experiment. QST LXIII: 23–25

    Google Scholar 

  • Ellis GRA, Klekociuk A, Woods AC, Reber G, Goldstone GT, Bums G, Dyson P, Essex E, Mendillo M (1988) Radio astronomy through an artificial ionospheric window: Spacelab-2 observations. Adv Space Res 8: 63–66

    Google Scholar 

  • Kellogg WW (1964) Pollution of the upper atmosphere by rockets. Space Sci Rev 3: 275–316

    Google Scholar 

  • Mendillo M (1981) The effect of rocket launches on the ionosphere. Adv Space Res 1: 275–290

    Google Scholar 

  • Mendillo M (1988) Ionospheric holes: a review of theory and recent experiments. Adv Space Res 8: 51–62

    Google Scholar 

  • Mendillo M, Baumgardner J (1982) Optical signature of an ionospheric hole. Geophys Res Lett 9: 215–218

    Google Scholar 

  • Mendillo M, Forbes J (1982) Theory and observation of a dynamically evolving negative ion plasma. J Geophys Res 87: 8273–8285

    Google Scholar 

  • Mendillo M, Hawkins GS, Klobuchar JA (1975) A large-scale hole in the ionospheric caused by the launch of skylab. Science 187: 343–346

    Google Scholar 

  • Mendillo M, Baumgardner J, Allen DP, Foster J, Holt J, Ellis GRA, Klekociuk A, Reber G (1987) Spacelab-2 depletion experiments for ionospheric and radio astronomical studies. Science 238: 1260–1264

    Google Scholar 

  • Rote DM (1980) Environmental effects of space systems: a review. In: Garrett HB, PiKeCP (eds) Space systems and their interactions with the Earth’s space environment. Prog Astronautics and Aeronautics, AIAA, New York Vol 71, pp 3–46

    Google Scholar 

  • Wand RH, Mendillo M (1984) Incoherent scatter observations of an artificially modified ionosphere. J Geophys Res 89: 203–215

    Google Scholar 

  • Yau AW, Whalen BA (1988) Auroral perturbation experiments. Adv Space Res 8: 67–78

    Google Scholar 

  • Zinn J, Sutherland CD, Stone SN, Duncan LM, Behnke R (1982) Ionospheric effects of rocket exhaust products —HEAD-, Skylab. J Atmos Terr Phys 44: 1143–1171

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dieminger, W., Hartmann, G.K., Leitinger, R. (1996). The Ionosphere. In: Dieminger, W., Hartmann, G.K., Leitinger, R. (eds) The Upper Atmosphere. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78717-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78717-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78719-5

  • Online ISBN: 978-3-642-78717-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics