Skip to main content

The Thermosphere: Selected Features

  • Chapter
  • 279 Accesses

Abstract

The thermosphere is the region above the mesosphere and exhibits the strongest height variation of temperature of all atmospheric layers, from the absolute minimum at the mesopause to the absolute maximum, the exospheric temperature. It is also the region where the most drastic changes in atmospheric composition occur and where the atmosphere becomes partly ionized and acquires the properties of a magneto-plasma. The solar EUV radiation is absorbed in the thermosphere and here we localize most of the electric current systems which are responsible for the so-called variations of the geomagnetic field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Nicolet M (1960) The properties and constitution of the upper atmosphere. In: Ratcliffe JA (ed) Physics of the upper atmosphere. Academic Press, New York, pp 17–71

    Google Scholar 

  • Sawyer JS (1963) Note on terminology and conventions for the high atmosphere. QJR Meteorol Soc 89: 156

    Article  Google Scholar 

  • Craig RA (1965) The upper atmosphere. Meteorology and physics. International Geophysics Series vol 8. Academic Press, New York

    Google Scholar 

  • Engebretson MJ, Mauersberger K, Kayser DC, Potter WE, Nier AO (1977) Empirical model of atomic nitrogen in the upper thermosphere. J Geophys Res 82: 461–471

    Article  Google Scholar 

  • Hedin AE (1983) A revised thermospheric model based on mass spectrometer and incoherent scatter data: MSIS-83. J Geophys Res 88:10 170–10 188

    Google Scholar 

  • Hedin AE (1987) MSIS-86 thermospheric model. J Geophys Res 92: 4649–4662

    Article  Google Scholar 

  • Hedin AE (199la) Extension of the MSIS thermosphere model into the middle and lower atmosphere. J Geophys Res 96:1159–1172

    Article  Google Scholar 

  • Hedin AE, Salah JA, Evans JV, Reber CA, Newton GP, Spencer NW, Kayser DC, Alcaydé D, Bauer P, Cogger L, McClure JP (1977a) A global thermospheric model based on mass spectrometer and incoherent scatter data, MSIS 1. N2 density and temperature. J Geophys Res 82: 2139–2147

    Article  Google Scholar 

  • Hedin AE, Reber CA, Newton GP, Spencer NW, Brinton HC, Mayr HG, Potter WE (1977b) A global thermospheric model based on mass spectrometer and incoherent scatter data, MSIS 2. Composition. J Geophys Res 82: 2148–2156

    Article  Google Scholar 

  • Jacchia LG (1977) Thermospheric temperature, density, and composition: New models. Spec Rep 375, Smithonian Astrophys Observ, Cambridge, Mass

    Google Scholar 

  • Köhnlein WD, Krankowsky D, Lämmerzahl P, Joos W, Volland H (1979) A thermospheric model of the annual variations of He, N, O, N2, and Ar from the AEROS NIMS data. J Geophys Res 84: 4355–4362

    Article  Google Scholar 

  • Albritton DL (1978) Ion-neutral reaction-rate constants measured in flow reactors through 1977. At Data Nucl Data Tables 22: 1

    Article  Google Scholar 

  • Anderson DA, Bernhardt PA (1978) Modeling the effects of an H2 gas release on equatorial ionosphere. J Geophys Res 83: 4777–4790

    Article  Google Scholar 

  • Banks PM, Kockarts G (1973) Aeronomy, vols A and B. Academic Press. Orlando

    Google Scholar 

  • Bernhardt PA (1987) Critical comparison of ionospheric depletion chemicals. J Geophys Res 92: 4617–4628

    Article  Google Scholar 

  • Forbes JM (1980) Upper atmosphere modifications due to chronic discharges of water vapour from space launch vehicle exhaust. In: Garrett HB, Pike CP (eds) Space systems and their interactions with Earth’s space environment, Summerfield M (ed) Prog. in astronautics and aeronautics, vol 71, Inst Astronaut Aeronaut, New York, pp 78–94

    Google Scholar 

  • Mendillo M, (1988) Ionospheric holes: a review of theory and recent experiments. Adv Space Res 8: 51–62

    Article  Google Scholar 

  • Mendillo M, Forbes JM (1978) Artificially created holes in the Ionosphere. J Geophys Res 83: 151–162

    Article  Google Scholar 

  • Mendillo M, Hawkins GS, Klobuchar JA (1975) A sudden vanishing of the ionospheric F-region due to the launch of Skylab. J Geophys Res 80: 2217–2228

    Article  Google Scholar 

  • Mitchell JBA, McGowan JW (1983) Experimental studies of electron-ion recombination. In: Brouillard F, McGowan JW (eds) Physics of ion-ion and electron-ion collisions. Plenum, New York

    Google Scholar 

  • Nicolet M (1971) In: Fiocco G (ed) Mesospheric models and related experiments. Reidel, Dordrecht, pp 1–55

    Google Scholar 

  • Wand R, Mendillo M (1984) Incoherent scatter observations of an artificially modified ionosphere. J Geophys Res 89: 203–215

    Article  Google Scholar 

  • Yau AW, Whalen BA, Harris FR, Gattinger RL, Pongratz MB, Bernhardt PA (1985) Simulations and observations of plasma depletions, ion composition and airglow emissions in two auroral ionospheric depletion experiments. J Geophys Res 90: 8387–8406

    Article  Google Scholar 

  • Zinn J, Sutherland CD, Stone SN, Duncan LM, Behnke R (1982) Ionospheric effects of rocket exhaust products — HEAO-C, Skylab. J Atmos Terr Phys 44: 1143–1171

    Google Scholar 

  • Hedin AE (1983) A revised thermospheric model based on mass spectrometer and incoherent scatter data: MSIS-83. J Geophys Res 88: 10170–10188

    Article  Google Scholar 

  • Hedin AE (1987) MSIS-86 thermospheric model. J Geophys Res 92: 4649–4662

    Article  Google Scholar 

  • Hedin AE (199la) Extension of the MSIS thermosphere model into the middle and lower atmosphere. J Geophys Res 96:1159–1172

    Google Scholar 

  • Hedin AE, Salah JA, Evans JV, Reber CA, Newton GP, Spencer NW, Kayser DC, Alcaydé D, Bauer P, Cogger L, McClure JP (1977a) A global thermospheric model based on mass spectrometer and incoherent scatter data, MSIS 1. N2 density and temperature. J Geophys Res 82: 2139–2147

    Google Scholar 

  • Hedin AE, Reber CA, Newton GP, Spencer NW, Brinton HC, Mayr HG, Potter WE (1977b) A global thermospheric model based on mass spectrometer and incoherent scatter data, MSIS 2. Composition. J Geophys Res 82: 2148–2156

    Google Scholar 

  • Hedin AE, Spencer NW, Killeen TL (1988) Empirical global model of upper thermosphere winds based on atmosphere and dynamics explorer satellite data. J Geophys Res 93: 9959–9978

    Article  Google Scholar 

  • Hedin AE, Biondi MA, Burnside RG, Hernandez G, Johnson RM, Killeen TL, Mazaudier C, Meriwether JW, Salah JE, Sica RJ, Smith RW, Spencer NW, Wickwar VB, Virdi TS (199 lb) Revised global model of thermosphere winds using satellite and ground-based observations. J Geophys Res 96: 7657–7688

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dieminger, W., Hartmann, G.K., Leitinger, R. (1996). The Thermosphere: Selected Features. In: Dieminger, W., Hartmann, G.K., Leitinger, R. (eds) The Upper Atmosphere. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78717-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78717-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78719-5

  • Online ISBN: 978-3-642-78717-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics