Skip to main content

Electromagnetic Waves in the Upper Atmosphere

  • Chapter
The Upper Atmosphere

Abstract

The refractive index, n, is the ratio of the phase speed of an electromagnetic wave in vacuum to its speed in a material medium, and refractivity is n − 1. The refractive index of atmospheric gases is described from the near ultraviolet to radio wavelengths. Nitrogen, oxygen, argon, water, carbon dioxide, and their mixture known as air, are the important refracting gases. Some gases present in trace concentrations, such as methane and nitrogen oxides, have significant absorption at certain wavelengths; but they are not significant for refraction at any wavelength longer than ultraviolet wavelengths. The origin of refraction from atomic and molecular resonances is discussed. The method of calculation of refractive index at any wavelength is given. The absorption windows offer the opportunity for simple and accurate refraction formulae valid over a range of wavelengths. The radio-, infrared-, and visible-wavelength windows are examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Birch KP (1991) Precise determination of refractometric parameters for atmospheric gases. J Opt Soc Am A 8: 647–651

    Google Scholar 

  • Boudouris G (1963) On the index of refraction of air, the absorption and dispersion of centimeter waves by gases. J Res Nat Bur Stand 67D: 631–684

    Google Scholar 

  • Edlen B (1966) The refractive index of air. Metrologia 2: 71–80

    Google Scholar 

  • Erickson KE (1962a) Investigation of the invariance of atmospheric dispersion with a long-path refractometer. J Opt Soc Am 52: 777–780

    Google Scholar 

  • Erickson KE (1962b) Precise determination of atmospheric dispersion with applications to long-path interferometry. Ph.D Thesis, Johns Hopkins University, Baltimore, Maryland

    Google Scholar 

  • Hill RJ, Lawrence RS (1986) Refractive index of water vapor in infrared windows. Infrared Phys 26: 371–376

    Google Scholar 

  • Hill RJ, Clifford SF, Lawrence RS (1980) Refractive-index and absorption fluctuations in the infrared caused by temperature, pressure, and humidity fluctuations. J Opt Soc Am 70: 1192–1205

    Google Scholar 

  • Hill RJ, Lawrence RS, Priestley JT (1982) Theoretical and calculational aspects of the radio refractive index of water vapor. Radio Sci 17: 1251–1257

    Google Scholar 

  • Liebe HJ (1985) An updated model for millimeter wave propagation in moist air. Radio Sci 20: 1069–1089

    Google Scholar 

  • Newell AC, Baird RC (1965) Absolute determination of refractive indices of gases at 47.7 gigahertz. J Appl Phys 36: 3751–3759

    Google Scholar 

  • Old JG, Gentili KL, Peck ER (1971) Dispersion of carbon dioxide. J Opt Soc Am 61: 89–90

    Google Scholar 

  • Owens JC (1967) Optical refractive index of air: dependence on pressure, temperature, and composition. Appl Opt 6: 51–59

    Google Scholar 

  • Peck ER, Fisher DJ (1964) Dispersion of argon. J Opt Soc Am 54: 1362–1364

    Google Scholar 

  • Peck ER, Khanna BN (1966) Dispersion of nitrogen. J Opt Soc Am 56: 1059–1063

    Google Scholar 

  • Peck ER, Reader K (1972) Dispersion of air. J Opt Soc Am 62: 958–926

    Google Scholar 

  • Penndorf R (1957) Tables of the refractive index for standard air and the Rayleigh scattering coefficient for the spectral region 0.2 to 20.0 µm and their application to atmospheric optics. J Opt Soc Am 47: 176–182

    Google Scholar 

  • Rayleigh JWS (1889) The theory of anomalous dispersion. Phil Mag 48: 151–152

    Google Scholar 

  • Rothman LS, Gamache RR, Barbe A, Goldman A, Gillis JR, Brown LR, Toth RA, Flaud J-M, Camy-Peyret C (1983) AFGL atmospheric absorption line parameters compilation: 1982 edn. Appl Opt 22:2247–2256

    Google Scholar 

  • Swamp P, Garg SK (1961) Dispersion of microwaves in oxygen. Indian J Phys 35: 28–33

    Google Scholar 

  • Zhevakin SA, Naumov AP (1967a) The index of refraction of the lower atmosphere for millimeter and submillimeter radio waves: magnetic permeability of molecular oxygen. Radio Eng Elec Phys 12: 1249–1252

    Google Scholar 

  • Zhevakin SA, Naumov AP (1967b) The index of refraction of the lower atmosphere for millimeter and submillimeter radiowaves: the rotational part of the dielectric permitivity of atmospheric water vapor at wavelengths greater than 10 micrometers. Radio Eng Elec Phys 12: 1067–1076

    Google Scholar 

  • Baraclough DR (1985) International geomagnetic reference field, revision 1985. Pure and Appl Geophys 123: 641–645

    Google Scholar 

  • Bauer A, Godon M, Kheddar M, Hartmann JM (1989) Temperature and perturber dependences of water vapour line-broadening: experiments at 183 GHz, calculations below 1000 GHz. J Quant Spectrosc Radiat Transfer 41: 49–54

    Google Scholar 

  • Born M, Wolf E (1959) Principles of optics (Sect. 1. 4 ). Pergamon Press, NY, NY

    Google Scholar 

  • COESA (1976) US standard atmosphere. NOAA-S7T 76–1562, U.S. Gov. Printing Office,VWashington DC

    Google Scholar 

  • Danese L, Partridge RB (1989) Atmospheric emission models: confrontation between observational data and predictions in the 2.5–300 GHz frequency range. Astrophys J 342: 604–615

    Google Scholar 

  • Furashov NI, Katkov VY, Svertlov BA (1989) Submillimetre spectrum of the atmospheric water vapour absorption — some experimental results. ICAP 89, IEE Conf Publ No 301: 310–311

    Google Scholar 

  • Hufford GA (1991) A model for the complex permittivity of ice at frequencies below 1 THz. Int. J. Infrared Mm Waves 12: 677–680

    Google Scholar 

  • Hufford GA, Liebe HJ (1989), Millimeter-wave propagation in the mesosphere. NTIA-Report 89–249. US Dept Corn, Boulder, CO (NTIS Order No. PB 90–119868/AF)

    Google Scholar 

  • Ishimaru A (1991), Electromagnetic wave propagation, radiation, and scattering. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Lenoir WB (1968) Microwave spectrum of molecular oxygen in the mesosphere. J Geophys Res 73: 361–376

    Google Scholar 

  • Liebe HJ (1985) An updated model for millimeter-wave propagation in moist air. Radio Sci. 20: 1069–1089

    Google Scholar 

  • Liebe HJ (1987) A contribution to modeling atmospheric millimeter-wave properties. Frequenz 41: 3136

    Google Scholar 

  • Liebe Hi (1989) MPM—an atmospheric millimeter-wave propagation model. Int J Infrared Mm Waves 10: 631–650

    Google Scholar 

  • Liebe Hi, Hufford GA, Manabe T (1991) A model for the complex permittivity of water at frequencies below 1 THz. Int J. Infrared Mm Waves 12: 659–675

    Google Scholar 

  • Liebe HJ, Rosenkranz PW, Hufford GA (1992) Atmospheric 60-GHz oxygen spectrum: new laboratory measurements and line parameters. J Quant Spectrosc Radiat Transfer 48: 629–643

    Google Scholar 

  • Ma Q, Tipping RH (1990) Water vapour continuum in the millimeter spectral region. J Chem Phys 93: 6127–6139

    Google Scholar 

  • Rosenkranz PW (1988) Interference coefficients for overlapping oxygen lines in air. J Quant Spectrosc Radiat Transfer 39: 287–297

    Google Scholar 

  • Rosenkranz PW (1993) Absorption of microwaves by atmospheric gases. In: Janssen MA, (ed) Atmospheric remote sensing by microwave radiometry, Chap 2. p 37–90, John Wiley & Sons Inc, NY, NY

    Google Scholar 

  • Rosenkranz PW,-Staelin DH (1988) Polarized thermal emission from oxygen in the mesosphere, Radio Sci 23: 721–729

    Google Scholar 

  • Townes CH, Schawlow AL (1955) Microwave spectroscopy (Chap. 11 ). McGraw-Hill, NY, NY

    Google Scholar 

  • Allis WP, Buchsbaum SJ, Bers A (1963) Waves in anisotropie plasmas. MIT Press

    Google Scholar 

  • Cambridge, MA Appleton EV (1928) The influence of the earth’s magnetic field on wireless transmission. Proc Union Radiosci Int 1: 2–3

    Google Scholar 

  • Booker HG (1934) Some general properties of the formulae of the magneto-ionic theory. Proc R Soc Lond A 147: 352–382

    Google Scholar 

  • Booker HG (1984) Cold plasma waves. Nijhoff, Dordrecht

    Google Scholar 

  • Brandstatter JJ (1963) An introduction to waves, rays and radiation in plasma media. McGraw-Hill, New York

    Google Scholar 

  • Budden KG (1985) The propagation of radio waves. Cambridge University Press, Cambridge

    Google Scholar 

  • Chen HC (1983) Theory of electromagnetic waves. A coordinate-free approach. Mc-Graw-Hill, New York

    Google Scholar 

  • Clemmow PC, Mullaly RF (1955) The dependence of the refractive index in magneto-ionic theory on the direction of the wave normal. In: Stickland AC (ed) The physics of the ionosphere. Phys Soc Conf Cambridge 1954. The Physical Society, London, pp 340–350

    Google Scholar 

  • Felsen LB Marcuvitz N (1973) Radiation and scattering of waves. Prentice Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  • Gallet R (1963) Whistlers. In: DeWitt C, Hieblot J, Lebeau A (eds) Geophysics. The Earth’s environment. Lectures Summer School Les Houches 1962 Gordon and Breach, New York pp 551–590

    Google Scholar 

  • Ginzburg VL (1964) The propagation of electromagnetic waves in plasmas. Pergamon, Oxford

    Google Scholar 

  • Lassen H (1927) Uber den Einfluß des Erdmagnetfeldes auf die Fortpflanzung der elektrischen Wellen der drahtlosen Telegraphie in der Atmosphäre. Elektr Nachr Technik 4: 324–334

    Google Scholar 

  • Poeverlein H (1948–1950) Strahlwege von Radiowellen in der Ionosphäre. Sitzungsber Bayer Akad Wiss Math -Naturwiss Klasse (1948): 169–201;

    Google Scholar 

  • Poeverlein H (1948–1950) Strahlwege von Radiowellen in der Ionosphäre. Z Angew Physik 1 (1949): 517–525;

    Google Scholar 

  • Poeverlein H (1948–1950) Strahlwege von Radiowellen in der Ionosphäre. Z Angew Physik 2 (1950): 152–160

    Google Scholar 

  • Ratcliffe JA (1962) The magneto-ionic theory and its applications to the ionosphere. Cambridge University Press, Cambridge

    Google Scholar 

  • Rawer K, Suchy K (1967) Radio-Observations of the ionosphere. In: Flügge S (ed) Handbuch der Physik vol 49/2. Springer Berlin Heidelberg New York, pp 1–546

    Google Scholar 

  • Sen HK, Wyller AA (1960) On the generalization of the Appleton-Hartree magnetoionic formulas. J Geophys Res 65: 3931–3950

    Google Scholar 

  • Stix TH (1962) The theory of plasma waves. McGraw-Hill, New York

    Google Scholar 

  • Suchy K (1984) Transport coefficients and collision frequencies for aeronomic plasmas. In: Rawer K (ed) Handbuch der Physik, vol 49/7. Springer Berlin Heidelberg New York, pp 57–221

    Google Scholar 

  • Appleton EV (1928) The influence of earth’s magnetic field on wireless transmission. In: Papers of the General Assembly held in Washington in October 1927, vol 1. International Union of Scientific Radio Telegraphy, Brussels pp 2–3

    Google Scholar 

  • Appleton EV (1932) Wireless studies of the ionosphere. J Instn Elect Eng 71: 642–650

    Google Scholar 

  • Arnold VI (1978) Mathematical methods of classical mechanics. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bennett JA (1967) The calculation of Doppler shifts due to a changing ionosphere. J Atmos Terr Phys 29: 887–891

    Google Scholar 

  • Beran MJ, Parrent GB Jr (1964) Theory of partial coherence. Prentice-Hall, Englewood Cliffs, New Jes

    Google Scholar 

  • Booker HG (1949) Application of the magneto-ionic theory to radio waves incident obliquely upon a horizontally-stratified ionosphere. J Geophys Res 54: 243–274

    Google Scholar 

  • Brillouin L (1926) La mécanique ondulatoire de Schrödinger; une méthode générale de résolution par approximations successives. Academie des sciences, Paris. 183: 24–26

    Google Scholar 

  • Budden KG (1961) Radio waves in the ionosphere: the mathematical theory of the reflection of radio waves from stratified ionized layers. Cambridge University Press, Cambridge

    Google Scholar 

  • Budden KG (1972) The theory of coupling of characteristic radio waves in the ionosphere. J Atmos Terr Phys 34: 1909–1921

    Google Scholar 

  • Budden KG (1985) The propagation of radio waves; the theory of radio waves of low power in the ionosphere and magnetosphere. Cambridge University Press, Cambridge

    Google Scholar 

  • Budden KG, Jull GW (1964) Reciprocity and nonreciprocity with magnetoionic rays. Can J Phys 42: 113–130

    Google Scholar 

  • Budden KG, Smith MS (1976) Phase memory and additional memory in WKB solutions for wave propagation in stratified media. Proc R Soc Lond A 350: 27–46

    Google Scholar 

  • Budden KG, Terry PD (1971) Radio ray tracing in complex space. Proc R Soc Lond A 231: 275–301

    Google Scholar 

  • Cervenÿ V, Hron F (1980) The ray series method and dynamic ray tracing system for three-dimensional inhomogeneous media. Bull Seismol Soc Am 70: 47–77

    Google Scholar 

  • Chander R (1975) On tracing seismic rays with specified end points. J Geophys Res 41: 173–177

    Google Scholar 

  • Croft TA, Gregory L (1963) A fast, versatile ray-tracing program for IBM 7090 digital computers. Rep SEL-63–107 (TR 82 ). Stanford Electronics Laboratories, Stanford, California

    Google Scholar 

  • Davies K (1965) Ionospheric radio propagation. NBS Monograph 80. US Govt Printing Office, Washington, DC

    Google Scholar 

  • Davies K (1969) Ionospheric radio waves. Blaisdell, Waltham, Massachusetts

    Google Scholar 

  • Eckersley TL (1932) Radio transmission problems treated by phase integral methods. Proc R Soc Lond A 136: 499–527

    Google Scholar 

  • Einaudi F, Hines CO (1970) WKB approximation in application to acoustic-gravity waves. Can J Phys 48: 1458–1471

    Google Scholar 

  • Felsen LB, Marcuvitz N (1973) Radiation and scattering of waves. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  • Feynman RP, Hibbs AR (1965) Quantum mechanics and path integrals. McGraw-Hill, New York

    Google Scholar 

  • Georges TM (1970) Amplification of ionospheric heating and triggering of “spread-F” by natural irregularities. J Geophys Res 75: 6436–6438

    Google Scholar 

  • Georges TM (1971) A program for calculating three-dimensional acoustic-gravity ray paths in the atmosphere. NOAA Technical Report ERL 212-WPL 16. NOAA Wave Propagation Laboratory, Boulder, Colorado

    Google Scholar 

  • Georges TM (1972) Acoustic ray paths through a model vortex with a viscous core. J Acoust Soc Am 51: 206–209

    Google Scholar 

  • Georges TM, Stephenson JJ (1968) HF radar signatures of traveling ionospheric irregularities: 3D ray-tracing simulation. Radio Sci 4: 679–696

    Google Scholar 

  • Georges TM, Jones RM, Riley JP (1986) Simulating ocean acoustic tomography measurements with Hamiltonian ray tracing. IEEE J Ocean Eng OE 11: 58–71

    Google Scholar 

  • Gillmor CS (1982) Wilhelm Altar, Edward Appleton and the magnetoionic theory. Proc Am Philos Soc 126: 395–440

    Google Scholar 

  • Goldstein S (1928) The influence of the earth’s magnetic field on electric transmission in the upper atmosphere. Proc R Soc Lond A 121: 260–285

    Google Scholar 

  • Hartree DR (1931) The propagation of electromagnetic waves in a refracting medium ‘in a magnetic field. Proc Camb Philos Soc 27: 143–162

    Google Scholar 

  • Haselgrove J (1954) Ray theory and a new method for ray tracing. In: The Physical Society of London (ed) The physics of the ionosphere: report of the Physical Society conference on the physics of the ionosphere held at the Cavendish Laboratory, Cambridge, September 1954. The Physical Society, London, pp 355–364

    Google Scholar 

  • Jeffreys H (1923) On certain approximate solutions of linear differential equations of the second order. Proc Lond Math Soc Ser 2 (23): 428–436

    Google Scholar 

  • Jones RM (1970) Ray theory for lossy media. Radio Sci 5: 793–801

    Google Scholar 

  • Jones RM (1981) The frequency shift of a pulse by a time-dependent dispersive, lossy medium. NOAA Tech Memo ERL WPL-80. NOAA Wave Propagation Laboratory, Boulder, Colorado

    Google Scholar 

  • Jones RM (1983) Acoustic-gravity wave dispersion relations in a baroclinic atmosphere. NOAA Tech Memo ERL WPL-112. NOAA Wave Propagation Laboratory, Boulder, Colorado

    Google Scholar 

  • Jones RIVI, Stephenson JJ (1975) A versatile three-dimensional ray tracing computer program for radio waves in the ionosphere. OT (Office of Telecommunications) Report 75–76. US Govt Printing Office, Washington, DC

    Google Scholar 

  • Jones RM, Riley JP, Georges TM (1982) A versatile three-dimensional Hamiltonian ray-tracing computer program for acoustic waves in the atmosphere. NOAA Tech Memo ERL WPL-103. NOAA Wave Propagation Laboratory, Boulder, Colorado

    Google Scholar 

  • Jones RM, Riley JP, Georges TM (1986a) HARPA: a versatile three-dimensional Hamiltonian ray-tracing program for acoustic waves in the atmosphere above irregular terrain. NOAA Wave Propagation Laboratory, Boulder, Colorado

    Google Scholar 

  • Jones RM, Riley JP, Georges TM (1986b) HARPO: a versatile three-dimensional Hamiltonian ray-tracing program for acoustic waves in an ocean with irregular bottom. NOAA Wave Propagation Laboratory, Boulder, Colorado

    Google Scholar 

  • Julian BR, Gubbins D (1977) Three-dimensional seismic ray tracing. J Geophys Res 43: 95–113

    Google Scholar 

  • Kramers HA (1926) Wellenmechanik und halbzahlige Quantisierung. Z Phys 39: 828–840

    Google Scholar 

  • Kravtsov YuA (1964a) A modification of the geometrical optics method. Radiofizika 7: 664–673

    Google Scholar 

  • Kravtsov YuA (1964b) Asymptotic solutions of Maxwell’s equations near a caustic. Radiofizika 7: 1049–1056

    Google Scholar 

  • Lassen H (1927) Über den Einfluss des Erdmagnetfeldes auf die Fortpflanzung der elektrischen Wellen der drahtlosen Telegraphie in der Atmosphäre. Elektr Nachr Tech 4: 324–334

    Google Scholar 

  • Lighthill MJ (1965) Group velocity. J Inst Math Appl 1: 1–28

    Google Scholar 

  • Lighthill MJ (1978) Waves in fluids. Sec 4. 5, General theory of ray tracing. Cambridge University Press, Cambridge

    Google Scholar 

  • Liouville J (1836) Sur le développement des fonctions ou parties de fonctions en séries dont les divers termes sont assujettis à satisfaire à une même équation différentielle du second ordre contenant un paramètre variable, I. J Math Pure Appl 1: 253–265

    Google Scholar 

  • Liouville J (1837a) Sur le développement des fonctions ou parties de fonctions en séries dont les divers termes sont assujettis à satisfaire à une même équation différentielle du second ordre contenant un paramètre variable, II. J Math Pure Appl 2: 16–35

    Google Scholar 

  • Liouville J (1837b) Sur le développement des fonctions ou parties de fonctions en séries dont les divers termes sont assujétis à satisfaire à une même équation différentielle du second ordre, contenant un paramètre variable, III. J Math Pur Appl 2: 418–436

    Google Scholar 

  • Ludwig D (1966) Uniform asymptotic expansions at a caustic. Comm Pure Appl Math 19: 215–250

    Google Scholar 

  • Misner CW, Thorne KS, Wheeler JA (1973) Gravitation. Freeman, San Francisco

    Google Scholar 

  • Pereyra V, Lee WHK, Keller FIB (1980) Solving two-point seismic-ray tracing problems in a heterogeneous medium. Bull Seismol Soc Am 70: 79–99

    Google Scholar 

  • Pierce AD (1965) Extension of the method of normal modes to sound propagation in an almost-stratified medium. J Acoust Soc Am 37: 19–27

    Google Scholar 

  • Poeverlein H (1949) Strahlwege von Radiowellen in der Ionosphäre, II: Theoretische Grundlagen. Z Angew Phys 1: 517–525

    Google Scholar 

  • Poeverlein H (1950) Strahlwege von Radiowellen in der Ionosphäre, III: Bilder theoretisch ermittelter Strahlwege. Z. Angew Phys 2: 152–160

    Google Scholar 

  • Ratcliffe JA (1959) The magneto-ionic theory and its applications to the ionosphere. Cambridge University Press, Cambridge

    Google Scholar 

  • Rawer K, Suchy K (1976) Remarks concerning the dispersion equation of electromagnetic waves in a magnetised cold plasma. J Atmos Terr Phys 38: 395–398

    Google Scholar 

  • Rayleigh Lord (John William Strutt) (1912) On the propagation of waves through a stratified medium, with special reference to the question of reflection. Proc R Soc A 86: 207–226

    Google Scholar 

  • Schiff LI (1955) Quantum mechanics, 2nd edn. McGraw-Hill, New York, pp 184–186

    Google Scholar 

  • Sen HK, Wyller AA (1960) On the generalization of the Appleton—Hartree magnetoionic formulas. J Geophys Res 65: 3931–3950

    Google Scholar 

  • Stephenson JJ, Georges TM (1969) Computer routines for synthesizing ground backscatter from three-dimensional raysets. ESSA Tech Rep ERL 120-ITS 84. U S Govt Printing Office, Washington, DC

    Google Scholar 

  • Suchy K (1972a) The velocity of a wave packet in an anisotropic absorbing medium. J Plasma Phys 8: 33–51

    Google Scholar 

  • Suchy K (1972b) Ray tracing in an anisotropic absorbing medium. J Plasma Phys 8: 53–65

    Google Scholar 

  • Wait JR (1962) Electromagnetic waves in stratified media. MacMillan, New York

    Google Scholar 

  • Weinberg S (1962) Eikonal method in magnetohydrodynamics. Phys. Rev 2nd Ser 126: 1899–1909

    Google Scholar 

  • Wentzel G (1926) Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik. Z Phys 38: 518–529

    Google Scholar 

  • White D, Pedersen M (1981) Evaluation of shadow-zone fields by uniform asymptotics and complex rays. J Acoust Soc Am 69: 1029–1059

    Google Scholar 

  • Adams GW, Edwards DP, Brosnahan JW (1985) The imaging Doppler interferometer: data analysis. Radio Sci 20: 1481–1492

    Google Scholar 

  • Adams GW, Brosnahan JW, Walden DC, Nemey SF (1986) Mesospheric observations using a 2.66-MHz radar as an imaging Doppler interferometer: description and first results. J Geophys Res 91: 1671–1683

    Google Scholar 

  • Avery SK, Vincent RA, Phillips A, Manson AH, Fraser GJ (1989) High-latitude tidal behaviour in the mesosphere and lower thermosphere. J Atm Terr Phys 51: 595–608

    Google Scholar 

  • Balsley BB, Garello R (1985) The kinetic energy density in the troposphere, stratosphere, and mesosphere: a preliminary study using the Poker Flat MST radar in Alaska. Radio Sci 20: 1355–1361

    Google Scholar 

  • Balsley BB, Riddle AC, (1984) Monthly mean values of the mesospheric wind fields over Poker Flat, Alaska. J Atm Sci 41: 2368–2375

    Google Scholar 

  • Balsley BB, Ecklund WL, Fritts DC (1983) VHF echoes from the high-latitude mesosphere and lower thermosphere: observations and interpretations. J Atm Sci 40: 2451

    Google Scholar 

  • Belrose JS (1970) Radio wave probing of the ionosphere by the partial reflection of radio waves (from heights below 100 km). J Atm Terr Phys 32: 567–596

    Google Scholar 

  • Belrose JS, Burke MJ (1964) Study of the lower ionosphere using partial reflection. J Geophys Res 69: 2799–2818

    Google Scholar 

  • Belrose JS, Burke MJ, Coyne TNR, Reed JE (1972) D-region measurements with the differentialabsorption, differential-phase partial-reflection experiments. J Geophys Res 77: 4829–4838

    Google Scholar 

  • Beynon WJG, Williams PJS (1978) Incoherent scatter of radio waves from the ionosphere. Rep Prog Phys 41: 909

    Google Scholar 

  • Biel AH von (1979) The use of amplitude distributions in practical data assessment problems. J Atm Terr Phys 41: 1201–1204

    Google Scholar 

  • Briggs BH (1984) The analysis of spaced sensor records by correlation techniques. Handbook for MAP. Vincent RA (ed) 13:166 SCOSTEP Secr, Univ Illinois, Urbana, IL

    Google Scholar 

  • Carter DA, Balsley BB (1982) The summer wind field between 80 and 93 km observed by the MST radar at Poker Flat, Alaska. (65°N) J Atm Sci 39: 2905

    Google Scholar 

  • Cornish CR, Larsen MF (1989) Observations of low-frequency inertia-gravity waves in the lower stratosphere over Arecibo. J Atm Sci 46: 2428–2439

    Google Scholar 

  • Czechowsky P, Rüster R (1985) Power spectra of mesospheric velocities in polar regions. Handbook for MAP 18:207–211. SCOSTEP Seer, Univ.

    Google Scholar 

  • Czechowsky P, Rüster R, Schmidt G (1979) Variations of mesospheric structures in different seasons. Geophys Res Lett 6: 459–462

    Google Scholar 

  • Czechowsky P, Reid IM, Rüster R, Schmidt G (1989) VHF radar echoes observed in the summer

    Google Scholar 

  • and winter polar mesosphere over Andoya, Norway. (1989) J Geophys Res 94: 5199–5217

    Google Scholar 

  • Dieminger W (1952) Über die Ursache der exzessiven Absorption in der Ionosphäre an Wintertagen. J Atm Terr Phys 2: 340

    Google Scholar 

  • Ebel A, Manson AH, Meek CE (1987) Short period fluctuations of the horizontal wind measured in the upper middle atmosphere and possible relationships to internal gravity waves. J Atm Ten Phys 49: 385

    Google Scholar 

  • Fellous JL, Cevolani G, Kingsley SP, Muller HG (1985) Atmospheric dynamics observed during the energy budget campaign. J Atm Ten Phys 47: 233–241

    Google Scholar 

  • Forbes JM (1984) Middle atmosphere tides. J Atm Ten Phys 46: 1049–1067

    Google Scholar 

  • Forbes JM (1985) MST radar detection of middle atmosphere tides. Radio Sci 20: 1435–1440

    Google Scholar 

  • Fraser GJ (1965) The measurement of atmospheric winds at altitudes of 64–110 km using ground-based radio equipment. J Atm Sci 22: 217–218

    Google Scholar 

  • Fraser GJ (1984) Partial-reflection spaced antenna wind measurements. Handbook for MAP 13: 233–247

    Google Scholar 

  • Fraser GJ (1989) Monthly mean winds in the mesosphere at 44S and 78S. Pageoph 130: 291

    Google Scholar 

  • Fritts DC (1984) Gravity wave saturation in the middle atmosphere: a review of theory and observations. Rev Geophys Space Phys 22: 275

    Google Scholar 

  • Fritts DC (1984) Recent progress in gravity wave saturation studies In: Transport processes in the middle atmosphere. Visconti G, Garcia R (eds) Reidel, Dordrecht, Series C: Math and Phys Sci 213:31

    Google Scholar 

  • Fritts DC, Rastogi PK (1985) Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: theory and observations. Radio Sci 20: 1247–1277

    Google Scholar 

  • Fritts DC, Geller MA, Balsley BB, Chanin ML, Hirota I, Holton JR, Kato S, Lindzen RS, Schoeberl MR, Vincent RA, Woodman RF (1984) Research status and recommendations from the Alaska Workshop on gravity waves and turbulence in the middle atmosphere. Fairbanks, Alaska, 18–22 July 1983 Bull Am Met Soc 65: 149–159

    Google Scholar 

  • Fritts DC, Tsuda T, Sato T, Fukao S, Kato S (1988a) Observational evidence of a saturated gravity wave spectrum in the troposphere and lower stratosphere. J Atm Sci 45: 1741

    Google Scholar 

  • Fritts DC, Smith SA, Balsley BB, Philbrick CR (1988b) Evidence of gravity wave saturation and local turbulence production in the summer mesosphere and lower thermosphere during the STATE experiment. J Geophys Res 93: 7015

    Google Scholar 

  • Gage KS (1990) Radar observations of the free atmosphere: structure and dynamics. AMS Monograph on radar in meteorology. Am Met Soc Boston 28: 534

    Google Scholar 

  • Gage KS, Balsley BB (1978) Doppler radar probing of the clear atmosphere. Bull Am Met Soc 59: 1074–1093

    Google Scholar 

  • Gage KS, Balsley BB (1980) On the scattering and reflection mechanism contributing to clear air radar echoes from the troposphere, stratosphere, and mesosphere. Radio Sci I5: 243–257

    Google Scholar 

  • Gage KS, Balsley BB (1984) MST radar studies of wind and turbulence in the middle atmosphere. J Atm Ten Phys 46: 739–753

    Google Scholar 

  • Gage KS, Green JL (1982) A technique for determining the temperature profile from VHF radar observations. J Appl Met 21: 1146–1149

    Google Scholar 

  • Gage KS, Nastrom GD (1985) On the spectrum of atmospheric velocity fluctuations seen by MST/ST radar and their interpretation. Radio Sci 20: 1339–1347

    Google Scholar 

  • Gage KS, Balsley BB, Garello R (1986) Comparisons of horizontal and vertical velocity spectra in the mesosphere, stratosphere and troposphere: observations and theory. Geophys Res Lett 13: 1125–1128

    Google Scholar 

  • Garcia RR, Solomon S, Avery SK, Reid GC (1987) Transport of nitric oxide and the D region winter anomaly. J Geophys Res 92: 977–994

    Google Scholar 

  • Gardner FF, Pawsey JL (1953) Study of the ionospheric D-region using partial reflections. J Atm Ten Phys 3: 321–344

    Google Scholar 

  • Geller MA (1979) Dynamics of the middle atmosphere. J Atm Ten Phys 41: 683

    Google Scholar 

  • Greenhow JS (1952) Characteristics of radio echoes from meteor trails. Proc Phys Soc London 65B: 169

    Google Scholar 

  • Gregory JB (1961) Radio wave reflections from the mesosphere, 1. Heights of occurrence. J Geophys Res 66: 429–445

    Google Scholar 

  • Gregory JB Manson AH (1969) Seasonal variations of electron densities below 100 km at mid-latitudes - I. Differential absorption measurements. J Atm Ten Phys 31: 683

    Google Scholar 

  • Hines CO (1988) Generation of turbulence by atmospheric waves. J Atm Sci 45: 1269

    Google Scholar 

  • Hocking WK (1983) On the extraction of atmospheric turbulence parameters from radar backscatter Doppler spectra–I. Theory. J Atm Ten Phys 45: 89–102

    Google Scholar 

  • Hocking WK (1985) Measurement of turbulent energy dissipation rates in the middle atmosphere by radar techniques: a review. Radio 20: 1403–1422

    Google Scholar 

  • Hocking WK (1987a) Turbulence in the region 80–120 km. Adv Space Res 7:(10)171-(10)181

    Google Scholar 

  • Hocking WK (1987b) Radar studies of small scale structure in the upper middle atmosphere and lower ionosphere. Adv Space Res 7:(10)327-(10)338

    Google Scholar 

  • Hocking WK (1988) Two years of continuous measurements of turbulence parameters in the upper mesosphere and lower thermosphere made with a 2-MHz radar. J Geophys Res 93: 2475

    Google Scholar 

  • Hocking WK, Röttger J (1983) Pulse length dependence of radar signal strengths for Fresnel backscatter. Radio Sci 18: 1312–1324

    Google Scholar 

  • Hocking WK, Vincent RA (1982) Comparative observations of D region HF partial reflections at 2 and 6 MHz. J Geophys Res 87: 7615–7624

    Google Scholar 

  • Hocking WK, Rüster R, Czechowsky P (1986) Absolute reflectivities and aspect sensitivities of VHF radio wave scatterers measured with the SOUSY radar. J Atm Terr Phys 48: 131–144

    Google Scholar 

  • Hocking WK, May P, Röttger J (1989) Interpretation, reliability and accuracies of parameters deduced by the spaced antenna method in middle atmosphere applications. Pageoph 130: 571–604

    Google Scholar 

  • Kelley MC, Farley DT, Röttger J (1987) The effect of cluster ions on anomalous VHF backscatter from the summer polar mesosphere. Geophys Res Lett 14: 1031–1034

    Google Scholar 

  • Klostermeyer J (1989) On the role of parametric instability in radar observations of mesospheric gravity waves. Handbook for MAP, SCOSTEP Secr, Univ IL 28: 299

    Google Scholar 

  • Klostermeyer J, Riister R (1984) VHF radar observation of wave instability and turbulence in the mesosphere. Adv Space Res 4: 79–82

    Google Scholar 

  • Kudeki E, Sürücü F, Woodman RF (1989) Mesospheric wind and aspect sensitivity measurements at Jicamarca using radar interferometry and poststatistics steering techniques. Radio Sci 25: 595–612

    Google Scholar 

  • La Hoz C, Röttger J, Rietveld M, Wannberg G, Franke SJ (1989) The status and planned developments of EISCAT in mesosphere and D-region experiments. Handbook for MAP, SCOSTEP Secr, Univer IL 28: 476–488

    Google Scholar 

  • Larsen MF, Röttger J (1989) The spaced antenna technique for radar wind profiling. J Atm Ocean Tech 6: 920–938

    Google Scholar 

  • Liu CH, Röttger J, Pan CJ, Franke SJ (1990) A model for spaced antenna observational mode for MST radars. Radio Sci 25: 551–563

    Google Scholar 

  • Larsen MF, Röttger J (1982) VHF and UHF Doppler radars as tools for synoptic research. Bull Am Met Soc 63: 996–1008

    Google Scholar 

  • Lindner BC (1975a) The nature of D-region scattering of vertical incidence radio waves. I Generalized statistical theory of diversity effects between spaced receiving antennas. Aust J Phys 28: 163–170

    Google Scholar 

  • Lindner BC (1975b) The nature of D-region scattering of vertical incidence radio waves. II Experimental observations using spaced antenna reception. Aust J Phys 28: 171–184

    Google Scholar 

  • Lindzen RS (1981) Turbulence and stress owing to gravity wave and tidal breakdown. J Geophys Res 86: 9707–9714

    Google Scholar 

  • Manson AH, Meek CE (1984) Comparisons between Primrose Lake (54°N, 110°W) rocob winds (20–60 km) and Saskatoon (52°N, 107°W) M.F.radar winds (60–110 km): 1978–1982. Space Res 4: 133

    Google Scholar 

  • Manson AH, Meek CE (1985) Middle atmosphere (60–110 km) tidal oscillations at Saskatoon, Canada (52°N, 107°W) during 1983–1984. Radio Sci 20: 1441

    Google Scholar 

  • Manson AH, Meek CE (1986) The dynamics of the mesosphere and lower thermosphere at Saskatoon (52°N). J Atm Sci 43: 276

    Google Scholar 

  • Manson AH, Meek CE (1987) Small-scale features in the middle atmosphere wind field at Saskatoon, Canada (52°N, 107°W): an analysis of MF radar data with rocker comparisons. J Atm Sci 44: 3661

    Google Scholar 

  • Manson AH, Meek CE (1988) Gravity wave propagation characteristics (60–120 km) as determinated by the Saskatoon MF radar (Gravnet) system: 1983–1985 at 52°N, 107°W. J Atm Sci 45: 932–946

    Google Scholar 

  • Manson AH, Meek CE, Gregory JB (1983) The semi-diurnal tide at the Equinoxes: MF radar observations for 1978–1982 at Saskatoon (52°N, 107°W). J Atm Sci 40: 969–976

    Google Scholar 

  • Manson AH, Meek CE, Labitzke K (1984) Responses of the upper middle atmosphere (60–110 km), to the first two stratwarms of MAP (1982/3, 1983/4). Adv Space Res 4: 51

    Google Scholar 

  • Manson AH, Meek CE, Fellous JL, Massebeuf M (1987) Winds oscillations 6 h-6 days) in the upper middle atmosphere at Monpazier (France, 45°N, 1°E) and Saskatoon (Canada, 52°N, 107°W) in 1979–1980. J Atm Ten Phys 49:1059–1069

    Google Scholar 

  • Manson AH, Meek CE, Avery SK, Tetenbaum D (1988) Comparison of mean wind and tidal fields at Saskatoon (52°N, 107°W) and Poker Flat (65°N, 147°W) during 1983/1984. Physica Scripta 37: 169–177

    Google Scholar 

  • Manson AH, Meek CE, Teitelbaum H, Vial F, Schminder R, Kürschner D, Smith MJ, Fraser GJ, Clark RR (1989) J Atm Terr Phys 51: 579

    Google Scholar 

  • Mathews JD (1984) The incoherent scatter radar as a tool for studying the ionospheric D-region. J Atm Ten Phys 46: 975–986

    Google Scholar 

  • Mckinley DWR (1961) Meteor science and engineering. McGraw-Hill, New York

    Google Scholar 

  • Meek CE, Manson AH (1981) Use of the full polarization measurement in the partial reflection experiment. J Atm Terr Phys 43: 45–58

    Google Scholar 

  • Meek CE, Manson AH (1988) Vertical motions in the upper middle atmosphere from the Saskatoon (52°N, 107°) MF radar (1988) Rpt. 2, Institute of Space and Atmospheric Studies, Univ. of Saskatchewan, Saskatoon

    Google Scholar 

  • Meek CE, Reid IM, Manson AH (1985a) Observations of mesospheric wind velocities: 1. gravity wave horizontal scales and phase velocities determined from spaced wind observations. Radio Sci 20: 1363–1382

    Google Scholar 

  • Meek CE, Reid IM, Manson AH (1985b) Observations of mesospheric wind velocities: 2. cross sections of power spectral density for 48–8 h, 8–1 h, and 1 h 10 min over 60–110 km for 1981. Radio Sci 20: 1383–1402

    Google Scholar 

  • Mitra SN (1949) A radio method of measuring winds in the ionosphere. Proc Inst Elec Eng 96, III: 441

    Google Scholar 

  • Mobbs SD (1985) Propagation of nonlinear internal gravity waves at stratospheric and mesospheric heights — Part III The wave shape. Ann Geophys 3: 599–607

    Google Scholar 

  • Muraoka Y, Sugiyama T, Kawahira K, Sato T, Tsuda T, Fukao S, Kato S (1988) Formation of mesospheric VHF echoing layers due to a gravity wave motion. J Atm Ten Phys 49: 243–258

    Google Scholar 

  • Muraoka Y, Sugiyama T, Sato T, Tsuda S, Fukao S, Kato S (1989) Interpretation of layered structure in mesospheric VHF echoes induced by an inertia gravity wave. Radio Sci 24: 393–406

    Google Scholar 

  • Olsson-Steel D, Elford WG (1987) The height distribution of radio meteors: observations at 2 MHz. J Atm Ten Phys 49: 243–258

    Google Scholar 

  • Phillips A, Vincent RA (1989) Radar observations of prevailing winds and waves in the southern hemisphere mesosphere and lower thermosphere. Pageoph 130: 303

    Google Scholar 

  • Rastogi PK (1981) Radar studies of gravity waves and tides in the middle atmosphere: a review. J Atm Ten Phys 43: 511

    Google Scholar 

  • Reid IM (1986) Gravity wave motions in the upper middle atmosphere (60–110 km). J Atm Terr Phys 48: 1057–1072

    Google Scholar 

  • Reid IM (1988) MF Doppler and spaced antenna radar measurements of upper middle atmosphere winds. J Atm Ten Phys 50: 117–134

    Google Scholar 

  • Reid IM, Vincent RA (1987) Measurements of mesospheric gravity wave momentum fluxes and mean flow acceleration at Adelaide, Australia. J Atm Ten Phys 49: 443–460

    Google Scholar 

  • Reid IM, Raster R, Schmidt G (1987) VHF radar observations of cat’s-eye-like structures at mesospheric heights. Nature 327: 43–45

    Google Scholar 

  • Robertson DS, Lilly DJ, Elford WG (1953) Measurements of winds in the upper atmosphere by means of drifting meteor trails I. J Atmos Ten Phys 4: 255

    Google Scholar 

  • Roper RG (1966) Atmospheric turbulence in the meteor region. J Geophys Res 71: 5785–5792

    Google Scholar 

  • Roper RG (1984) MWR — meteor wind radars. Handbook for MAP (R.A. Vincent edit.) SCOSTEP Secr, Univ IL 13: 124

    Google Scholar 

  • Royrvik O, Gibbs KP, Bowhill SA (1982) VHF power scattered from the mesosphere at mid-latitudes. 87: 2501–2508

    Google Scholar 

  • Raster R (1984) Winds and waves in the middle atmosphere as observed by ground-based radars. Adv Space Res 4: 3–18

    Google Scholar 

  • Raster R, Klostermeyer J (1987) Propagation of turbulence structures detected by VHF radar. J Atm Terr Phys 49: 743–750

    Google Scholar 

  • Röttger J (1981a) Investigations of lower and middle atmosphere dynamics with spaced antenna drifts radars. J Atm Ten Phys 43: 277–292

    Google Scholar 

  • Röttger J The MST radar technique (1984a) Handbook for MAP, SCOSTEP Secr IL, 13: 187–232

    Google Scholar 

  • Röttger J (1987a) The relation of gravity waves and turbulence in the mesosphere. Adv Space Res 7:(10)345-(10)348

    Google Scholar 

  • Röttger J (1987b) VHF radar measurements of small-scale and meso-scale dynamical processes in the middle atmosphere. Phil Trans Roy Soc Lond A323: 611–628

    Google Scholar 

  • Röttger J (1991) MST Radar and incoherent scatter radar contributions to studying the middle atmosphere. J Geomag Geoelectr 43: 563–596

    Google Scholar 

  • Röttger J, Ierkic HM (1985) Postset beam steering and interferometer applications of VHF radars to study winds, waves, and turbulence in the lower and middle atmosphere. Radio Sci 20: 1461–1480

    Google Scholar 

  • Röttger J, Larsen MF (1990) UHF/VHF radar technique for atmospheric research and wind profiler application. In: Radar in meteorology, edited by Atlas D (ed) Am Met Soc 21a: 235–281

    Google Scholar 

  • Röttger J, La Hoz C, Kelley MC, Hoppe U-P, Hall C (1988) The structure and dynamics of polar mesosphere summer echoes observed with the EISCAT 224 MHz radar. Geophys Res Lett 15: 1353–1356

    Google Scholar 

  • Röttger J, La Hoz C, Franke SJ, Liu CH (1990) Steepening of reflectivity structures detected in high-resolution Doppler spectra of Polar Mesosphere Summer Echoes (PMSE) observed with the EISCAT 224 MHz radar. J Atm Terr Phys 52 No. 10 /11, 939–954

    Google Scholar 

  • Sato T, Tsuda T, Kato S, Morimoto S, Fukao S, Kimura I (1985) High resolution MST observations of turbulence using the MU radar. Radio Sci 20: 1452–1460

    Google Scholar 

  • Schmidt G (1979) Variations of mesospheric structures in different seasons. Geophys Res Lett 6: 459

    Google Scholar 

  • Sen HK, Wyller AA (1960) On the generalization of the Appleton-Hartree magnetoionic formulas. J Geophys Res 65: 3931–3950

    Google Scholar 

  • Smith SA, Fritts DC, VanZandt TE (1987) Evidence for a saturated spectrum of atmospheric gravity waves. J Atm Sci 44: 1404–1410

    Google Scholar 

  • Tetenbaum D, Avery SK, Riddle AC (1986) Observations of mean tidal winds and tides in the upper mesosphere during 1980–1984, using the Poker Flat, Alaska, MST radar as a meteor radar. J Geophys Res 91:14, 539–14, 555

    Google Scholar 

  • Tsuda T, Nakamura T, Kato S (1987) Mean winds observed by the Kyoto meteor radar in 1983–1985. J Atm Terr Phys 49: 461–466

    Google Scholar 

  • Vincent RA (1984) MF/HF radar measurements of the dynamics of the mesopause region — a review. J Atm Terr Phys 46: 961

    Google Scholar 

  • Vincent RA (1987) Radar observations of gravity waves in the mesosphere. In: Visconti G Garcia R (eds) Transport processes in the middle atmosphere. Reidel Dordrecht, 47–56

    Google Scholar 

  • Vincent RA, Belrose JS (1978) The angular distribution of radio waves partially reflected from the lower ionosphere. J Atm Terr Phys 40: 35–47

    Google Scholar 

  • Vincent RA, Reid IM (1983) HF Doppler measurements of mesospheric gravity wave momentum fluxes. J Atm Sci 40: 1321–1333

    Google Scholar 

  • Wang ST, Tetenbaum D, Balsley BB, Ober RL, Avery SK, Avery JP (1988) A meteor echo detection and collection system for use on VHF radars. Radio Sci 23: 46–54

    Google Scholar 

  • Watkins BJ, Philbrick CR, Balsley BB (1988) Turbulence energy dissipation rates and inner scale sizes from rocket and radar data. J Geo Phys Res 93: 7009–7014

    Google Scholar 

  • Weinstock J (1985) Theoretical gravity wave spectrum in the atmosphere: strong and weak interactions. Radio Sci 20: 1295–1300

    Google Scholar 

  • Woodman RF (1977) Mesospheric winds at equatorial latitudes. J Atm Terr Phys 39: 941–958

    Google Scholar 

  • Woodman RF (1980) High-altitude resolution stratospheric measurements with the Arecibo 430-MHz radar. Radio Sci 15: 417–422

    Google Scholar 

  • Woodman RF, Guillen A (1974) Radar observations of winds and turbulence in the stratosphere and mesosphere. J Atm Sci 31: 493–505

    Google Scholar 

  • Yamamoto M, Tsuda T, Kato S (1986) Gravity waves observed by the Kyoto meteor radar in 1983–1985. J Atm Ten Phys 48: 597–603

    Google Scholar 

  • vanZandt TE, Fritts DC (1989) A theory of enhanced saturation of the gravity wave spectrum due to increases in atmospheric stability. Pure Appl Geophys 130: 391–399

    Google Scholar 

  • Argo PE (1986) Digital ionosonde observations during equatorial spread F. J Geophys Res 91 (A5): 5539–5555

    Google Scholar 

  • Bibl K (1958) Zur Dynamik der Ionosphäre. Z Geophys 24: 1–33

    Google Scholar 

  • Bibl K, Reinisch BW (1978) The universal digital ionosonde. Radio Sci 13 (3): 519–530

    Google Scholar 

  • Breit G, Tuve MA (1926) A test of the existence of the conducting layer. Phys Rev 28: 554–575

    Google Scholar 

  • Buchau J, Reinisch BW, Anderson DN, Weber EJ, Dozois C (1988) Polar cap plasma convection measurements and their relevance to the modeling of the high-latitude ionosphere. Radio Sci 23 (4): 521–536

    Google Scholar 

  • Bullett T (1992) Mid-latitude F region drift measurements with a digital ionosonde. Ph.D. Thesis, University of Massachusetts Lowell, Lowell, MA, USA

    Google Scholar 

  • Cannon PS, Reinisch BW, Buchau J, Bullett TW (1991) Response of the polar cap F region convection direction to changes in the interplanetary magnetic field: Digisonde measurements in northern Greenland. J Geophys Res 96 (A2): 1239–1250

    Google Scholar 

  • Davies K (1969) Ionospheric radio waves. Blaisdell, Waltham MA

    Google Scholar 

  • Gilbert JD, Smith RW (1988) A comparison between the automatic ionogram scaling system ARTIST and the standard manual method. Radio Sci 23 (6): 968–974

    Google Scholar 

  • Grubb RN (1979) The NOAA SEL HF radar systems (ionospheric sounder). NOAA Tech Memo ERL SEL-55, NOAA Environmental Research Laboratories, Boulder, CO

    Google Scholar 

  • Gulyaeva T, Titheridge J, Rawer K (1990) Discussion of the valley problem in N(h) analysis of ionograms. Adv Space Res 8 (8): 123–132

    Google Scholar 

  • Jursa AS (1985) Handbook of Geophysics and the Space Environment. Air Force Geophysics Laboratory, US Air Force Nat Tech Info Sen’ Springfield VA

    Google Scholar 

  • Piggott WR, Rawer K (1972) URSI handbook of ionogram interpretation and reduction. WDC A for STP, Boulder, CO, Report UAG-23

    Google Scholar 

  • Poole AWV (1985) Advanced sounding 1: the FMCW alternative., Radio Sci 20 (6): 1609–1616

    Google Scholar 

  • Reinisch BW (1986) New techniques in ground-based ionospheric sounding and studies. Radio Sci 21 (3): 331–346

    Google Scholar 

  • Reinisch BW, Huang X (1983) Automatic calculation of electron density profiles from digital ionograms. Radio Sci 18 (3): 477–492

    Google Scholar 

  • Reinisch BW, Buchau J, Weber E (1987) Digital ionosonde observations of the polar cap F region convection. Physica Scripta 36: 372–377

    Google Scholar 

  • Reinisch BW, Gamache RR, Huang X, McNamara LF (1988) Real time electron density profiles from ionograms. Adv Space Res 8 (4): 63–72

    Google Scholar 

  • Titheridge JE (1985) Ionogram analysis with the generalized program POLAN. Report UAG-93, World Data Center-A, Boulder, CO, USA.

    Google Scholar 

  • Wright JW, Pitteway MLV (1979) Real time data acquisition and interpretation capabilities of the Dynasonde. 2. Determination of magnetoionic mode and echolocation. Radio Sci 14:815–835 Wright JW, Knecht RW, Davies K (1957) Annals of the IGY, III, part I. Pergamon, Oxford

    Google Scholar 

  • Alcayde D (1974) Diurnal and long-term behaviour of the exospheric temperature as observed by incoherent scatter sounding in the F2 region. Radio Sci 9: 239–245

    Google Scholar 

  • Baron MJ (1974) Electron densities within aurorae and other auroral E-region characteristics. Radio Sci 9: 341–348

    Google Scholar 

  • Dougherty JP, Farley DT (1960) A theory of incoherent scattering of radio waves by a plasma. Proc Roy Soc Lond A259, 79–99

    Google Scholar 

  • Evans JV (1969) Theory and practice of ionosphere study by Thomson scatter. radar. Proc IEEE 57: 496–530

    Google Scholar 

  • Fejer J (1960) Scattering of radio waves by an ionized gas in thermal equilibrium. Can J Phys 38: 1114–1133

    Google Scholar 

  • Gordon WE (1958) Incoherent scattering of radio waves by free electrons with applications to space exploration by radar. Proc IRE 46: 1824–1829

    Google Scholar 

  • Hagfors T (1961) Density fluctuations in a plasma in a magnetic field with applications to the ionosphere. J Geophys Res 66: 1699–1712

    Google Scholar 

  • Kunitake M, Schlegel K (1991) Neutral winds in the lower thermosphere at high latitudes from five years of EISCAT data. Ann Geophys 9: 143–155

    Google Scholar 

  • Mauelshagen HP (1990) Untersuchungen an “travelling ionospheric disturbances” in der F-Schicht der Polarlichtzone mit Hilfe von EISCAT-Daten. Thesis, Univ Göttingen

    Google Scholar 

  • Salah JE, Evans JV, Wand RH (1974) Seasonal variations in the thermosphere above Millstone Hill. Radio Sci 9: 231–245

    Google Scholar 

  • Woodman RE (1970) Vertical drift velocities and east-west electric fields at the magnetic equator. J Geophys Res 75: 6239

    Google Scholar 

  • Aellig C, Kämpfer N, Bevilacqua RM (1993) J Geophys Res 98: 2975–2983

    Google Scholar 

  • Barrett AH, Kuiper JW, Lenoir WB (1966) J Geophys Res 71 /20: 4723–4734

    Google Scholar 

  • Bevilacqua RM, Olivero JJ (1988) J Geophys Res 93/D8:9463–9475

    Google Scholar 

  • Bevilacqua RM, Olivero JJ, Schwartz PR, Gibbins CJ, Bologna JM, Thacker DL (1983) J Geophys Res 88: 8523–8534

    Google Scholar 

  • Chahine M (1972) J Atmos Sci 29: 741

    Google Scholar 

  • Chance K, Jucks KW, Johnson DG, Traub WA (1994) J Quant Spectrosc Radiat Transfer 52: 447–457

    Google Scholar 

  • Connor BJ, Parrish A, Tson JJ, McCormick MP (1995) J Geophys Res 100: 9283–9291

    Google Scholar 

  • Crewell S, Fabian R, Künzi K, Nett H, Wehr T, Read W, Waters J (1995) Geophys Res Lett 22: 1489–1492

    Google Scholar 

  • Croskey C, Kämpfer N, Bevilacqua RM, Hartmann GK, Künzi KF, Schwartz PR, Olivero JJ, Puliafito SE, Aellig C, Umlauft G, Waltman W, Degenhardt W (1992) IEEE Trans MTT 40: 1090–1100

    Google Scholar 

  • de Zafra RL, Parrish A, Solomon PM, Barrett JW (1983) Int J Infrared Millimeter Waves 4: 5

    Google Scholar 

  • Emmons LK, Reeves JM, Shindell DT, de Zafra RL (1995) J Geophys Res 100: 3049–3055

    Google Scholar 

  • Gibbins CJ, Dawkins AWJ, Maddison BM (1988) Planet Space Sci 36 /6: 607–620

    Google Scholar 

  • Goldsmith PF, Plambeck RL, Chiao RY (1974) IEEE Trans MTT: 1115–1116

    Google Scholar 

  • Husson N, Bonnet B, Chedin A, Scott NA, Chursin AA, Golorko VF, Tynterev VIG (1994) J Quant Spectrosc Radiat Transfer 52: 425–438

    Google Scholar 

  • Janssen MA (ed) (1993) Atmospheric remore sensing by microwave radiometry. John Wiley & Sons

    Google Scholar 

  • Künzi KF, Carlson ER (1982) J Geophys Res 87/C9:7235–7241

    Google Scholar 

  • Liebe HJ (1987) Complex radio refractivity of atmospheric air (I to 1000 GHz), available from Inst for Telecommunication Sciences, NTIA/ITS. S3, Boulder, Co 80303, USA

    Google Scholar 

  • Lobsiger E (1987) J Atmos Terr Phys 49: 493

    Google Scholar 

  • Lobsiger E, Künzi KF (1986) J Atmos Terr Phys 48: 1153

    Google Scholar 

  • Parrish A (1994) Proc IEEE 82: 1915–1929

    Google Scholar 

  • Peter R, Künzi K (1988) Geophys Res Lett 15 /11: 1173–1176

    Google Scholar 

  • Randegger AK (1980) Pageoph 118: 1052–1065

    Google Scholar 

  • Rodgers CD (1976) Rev Geophys Space Phys 14: 609

    Google Scholar 

  • Rodgers CD (1990) J Geophys Res 95/D5:5587

    Google Scholar 

  • Rothman LS, Gamache RR, Tipping RH, Rinsland CP, Smith MAH, Benner CD, Mealathy Devi V, Eland JM, Camey-Peyret C, Perrin A, Goldman A, Massie ST, Brown LR, Toth RA (1992) J Quant Spectrosc Radiat Transfer 48: 469–507

    Google Scholar 

  • Solomon PM, de Zafra RL, Parrish A, Barreth JW (1984) Science Vol 224: 1210–1214

    Google Scholar 

  • Stachnik RA, Hardy JC, Tarsala JA, Waters JW (1992) Geophys Res Lett 19 /19: 1931–1934

    Google Scholar 

  • Twomey S, Herman B, Rabinoff R (1977) J Atmos Sci 34: 1085

    Google Scholar 

  • Waters JW (1976) Methods of experimental physics, vol 12. Astrophysics, Part B. Academic Press, New York, pp 142–176

    Google Scholar 

  • Waters JW (1989) Atmos Res 23: 391–410

    Google Scholar 

  • Waters JW, Wilson WJ, Shimabukuro FI (1976) Science 191: 1174–1175

    Google Scholar 

  • Waters JW, Gustincic JJ, Swanson PN, Kerr AR (1980) In: Atmospheric water vapor. Academic Press, New York

    Google Scholar 

  • Waters JW, Froidevaux L, Read WG, Manney GL, Elson LS, Flower DA, Iamot RF, Harwood RS (1993) Nature 362: 597–602

    Google Scholar 

  • Waters JW, Stachnik RA, Hardy JC, Jamot RF (1988) Geophys Res Lett 15 /8: 780–783

    Google Scholar 

  • Wehr T, Crewel! S, Künzi K, Langen J, Nett H, Urban J, Hartogh P (1995) J Geophys Res 100: 20957–20968

    Google Scholar 

  • Austin Garcia R, Russell JM III, Solomon S (1986) On the atmospheric photochemistry of HNO3, Accepted by J Geophys Res

    Google Scholar 

  • Barnett JJ, Corney M (1984) Temperature comparisons between the NIMBUS 7 SAMS, rocket/ radiosondes and the NOAA 6 SSU J Geophys Res 89:No. D4: June 30, 5294

    Google Scholar 

  • Barth CA, Rusch DW, Thomas RJ, Mount GH, Rottmon GJ, Thomas GE, Saunders RW, Lawrence GM (1983) Solar mesosphere explorer: scientific objectives and results. Geophys Res Lett 10: 237

    Google Scholar 

  • Bhartia PK, Klenk KF, Fleig AJ, Wellemeyer CG, Gordon D (1984a) Intercomparison of NIMBUS 7 solar backscattered ultraviolet ozone profiles with rocket, balloon, and umkehr profiles. J Geophy Res 89: 5227–5238

    Google Scholar 

  • Bhartia PK, Klenk KF, Wong CK, Gordon B, Fleig AJ (1984b) Intercomparison of the Nimbus 7 SBUV/TOMS total ozone data set with Dobson and M83 results. J Geophys Res 89: 5239–5248

    Google Scholar 

  • Brewer AW (1949): Evidence for a world circulation provided by measurements of helium and water vapor distribution in the stratosphere. Q J Royal Met Soc 75: 731

    Google Scholar 

  • Callis LB, Natarajan M, Boughner RE, Russell JM III, Lambeth JD (1986) Stratospheric photochemical studies using NIMBUS 7 data part IL development of inferred trace species distributions. J Geophys Res 91: C1, January 20

    Google Scholar 

  • Clancy RT, Muhleman DO, Allen M (1984) Seasonal variability of carbon monoxide in the terrestrial mesosphere. J Geophys Res 89:D6, October 20, 9673–9676

    Google Scholar 

  • Chu WP, McCormick MP (1986) SAGE observations of stratospheric nitrogen dioxides. J Geophys Res, to be published

    Google Scholar 

  • Cunnold DM, Pitts MC, Trepte CR (1984) An intercomparison of SAGE and SBUV ozone observations for March and April 1979. J Geophys Res 89: 5249

    Google Scholar 

  • Craven PD, Ton MR (eds) Atmospheric laboratory for applications and science (ATLAS) Mission 1. (1988) NASA Technical Memorandum 4101 NASA MSFC, Alabama; Scientific and Technical Information Division

    Google Scholar 

  • Danielsen EF (1982) A dehydration mechanism for the stratosphere. Geophys Res Lett 9: 605

    Google Scholar 

  • Drummond JR, Houghton JT, Peskett GD, Rodgers CD, Wale MJ, Whitney J, Williamson EJ (1980) The stratospheric and mesospheric sounder on NIMBUS 7. Phil Trans R Soc Lond Ser. A, 296: 219–241

    Google Scholar 

  • Fleig A, Gille JC, McCormick MP, Rusch DW, Russell JM III, Lindsay JM (1984) Intercomparison of satellite ozone measurements. Paper presented at the Quadrennial Ozone Symposium, Thessaloniki, Greece, August 1984

    Google Scholar 

  • Fleig AJ, Klenk KF, Bhartia PK, Gordan D, Schneider WH (1982) Users guide for the solar backscatter ultraviolet ( SBUV) instrument first year ozone-S data set. NASA-RP 1095

    Google Scholar 

  • Garcia RR, Solomon S (1985) The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. J Geophys Res 90: D2, 3850

    Google Scholar 

  • Gille JC, Bailey PL, Russell JM Ill (1980) Temperature and composition measurements from the LRIR and LIMS experiments on NIMBUS 6 and 7. Phil Trans R Soc 293: 205–218

    Google Scholar 

  • Gille JC, Bailey PL, Russell JM III, Remsberg EE, Gordley L (1986) The climatology of stratospheric HNO3 measured by LIMS, To be submitted to J Geophys Res

    Google Scholar 

  • Gille JC, Russell JM III, Bailey PL, Remsberg EE, Gordley LL, Evans WFJ, Fischer H, Gandrud BW, Girard A, Harries JE, Beck SA (1984a) Accuracy and precision of the nitric acid concentrations determined by the limb infrared monitor of the stratosphere (LIMS) experiment on NIMBUS 7. J Geophys Res 89:D4, June 30, 5179–5190

    Google Scholar 

  • Gille JC, Russell JM III, Bailey PL, Gordley LL, Remsberg EE, Lienesch JH, Planet WG, House FB, Lyjak LV, Beck SB (1984b) Validation of temperature retrievals obtained by the limb infrared monitor of the stratosphere (LIMS). J Geophys Res 89:D4, June 30, 5147–5160

    Google Scholar 

  • Gray L, Haigh JD, Jones RL, Pyle JA, Wells RJ, Zavody AM (1984) Paper presented at the Quadrennial Ozone Symposium, Thessaloniki, Greece, August 1984

    Google Scholar 

  • Gray LG, Pyle JA (1985) Submitted to the Q J Royal Met Soc

    Google Scholar 

  • Grose WL, Rodgers CD (eds) (1986) Coordinated study of the behavior of the middle atmosphere in winter: monthly mean comparisons of satellite and radiosonde data and derived quantities. To be published in a future MAP Handbook

    Google Scholar 

  • Grose WL, Russell JM III (1986) The use of isentropic potential vorticity in conjunction with quasi-conserved species in the study of stratospheric dynamics and transport. To be submitted to J Geophys Res

    Google Scholar 

  • Guthrie PD, Jackman CH, Herman JR, McQuillan CJ (1984) A diabatic circulation experiment in a two-dimensional photochemical model J Geophys Res 89: 9589

    Google Scholar 

  • Haggard KV, Remsberg EE, Grose WL, Russell JM Ill, Marshall BT, Lingenfelser G (1986a) The Nimbus 7 LIMS MAP archive tape Part I - temperature and geopotential. NASA TP, in review.

    Google Scholar 

  • Haggard KV, Marshall BT, Kurzeja RJ, Remsberg EE, Russell JM III (1986b) The Nimbus 7 LIMS map archive tape. Part II - Water vapor and nitrogen dioxide. NASA TP, in preparation

    Google Scholar 

  • Heath DF, Krueger Ai, Crutzen RI (1977) Solar proton event: influence on stratospheric ozone. Science 197: 886

    Google Scholar 

  • Heath DF, Krueger Ai, Roder HA, Henderson BD (1975) The solar backscatter ultraviolet and total ozone mapping spectrometer (SBUV/TOMS) for Nimbus 6. Opt Eng 14: 323

    Google Scholar 

  • Hoffman DJ, Rosen JM (1981) On the background stratospheric aerosol layer. J Atmos Sci 38: 168–181

    Google Scholar 

  • Johnston HS, Solomon S (1979) Thunderstorms as possible micrometeorological sink for stratospheric water J Geophys Res 84: 3155

    Google Scholar 

  • Jones RL, Pyle JA (1984) Observations of CH4 and N2O by the NIMBUS 7 SAMS: a comparison with in-situ data and two-dimensional numerical model calculations. J Geophys Res 89: 5263

    Google Scholar 

  • Jones RL, Pyle JA, Harries JE, Zavody AM, Russell JM III, Gille JC (1986) The water vapor budget of the stratosphere studied using LIMS and SAMS satellite data. Submitted to the Q J Roy Meteor Soc

    Google Scholar 

  • Kent GS, Trepte CR, Farrukh VO, McCormick MP (1985) Variations in the stratospheric aerosol associated with the north cyclonic polar vortex as measured by the SAM II satellite sensor J Atmos Sci 42: 1536

    Google Scholar 

  • Kida H (1983) General circulation of air parcels and transport characteristics derived from a hemispheric GCM Part I. A determination of advective mass flow in the lower stratosphere J Met Soc Jap 61: 171

    Google Scholar 

  • Kley D, Stone EJ, Henderson WR, Drummon JW, Harrop W, Schmeltekopf AL, Thompson TL, Winkler RW (1979) In situ measurements of the mixing ratio of water vapor in the stratosphere J Atmos Sci 96: 2513

    Google Scholar 

  • Ko MKW, Tung KK, Weisenstein DK, Sze ND (1984) A zonal mean model of stratospheric tracer transport in isentropic coordinates: numerical simulations for nitrous oxide and nitric acid. Submitted to J Geophys Res

    Google Scholar 

  • Lem HY, Farlow NH (1979) Efficiency of aerosol collection on wires exposed in the stratosphere NASA TM-81147, Ames Research Center

    Google Scholar 

  • McCormick MP, Swissler TJ, Chu WP, Fuller WH, Jr (1978) Post-volcanic stratospheric aerosol decay as measured by Lidar J Atmos Sci 35: 1296–1303

    Google Scholar 

  • McCormick MP, Chu WP, Grams GW, Hamil P, Herman BM, McMaster LR, Pepin TJ, Russell PB, Steele HM, Swissler Ti (1981) High-latitude stratospheric aerosols measured by the SAM II satellite system in 1978 and 1979. Science 214 Oct. 16: 328–331

    Google Scholar 

  • McCormick MP, Kent CS, Yue GK, Cunnold DM (1982) Stratospheric aerosol effects from Soufriere volcano as measured by the SAGE satellite system. Science 216: 1115–1118

    Google Scholar 

  • McCormick MP, Trepte Cr, Kent GS (1983) Spatial changes in the stratospheric aerosol associated with the north polar vortex. Geophys Res Lett 10: 941–944

    Google Scholar 

  • McCormick MP, Swissler TJ, Hilsrenrath E, Krueger AJ, Osborn MT (1984) Satellite and correlative measurements of stratospheric ozone: comparison of measurements made by SAGE, ECC balloons, chemiluminescent, and optical rocketsondes. J Geophys Res 89:D4, June 30, 5315

    Google Scholar 

  • McIntyre ME, Palmer TN (1983) Breaking planetary waves in the stratosphere. Nature 305: 593

    Google Scholar 

  • McPeters RD, Heath DJ, Bhartia PK (1984) Average ozone profiles for 1979 from the Nimbus 7 SBUV instrument. J Geophys Res 89: 5199–5214

    Google Scholar 

  • Mount GH, Rusch D, Noxon JF, Zawodny JM, Barth CA (1984) Measurements of stratospheric NO2 from the solar mesosphere explorer satellite. I. An overview of the results J Geophys Res 89: 1327–1340

    Google Scholar 

  • Murphy AK (1985) Satellite measurements of atmospheric trace cases. D.Phil Thesis, Oxford University

    Google Scholar 

  • Newell RES, Gould-Stewart A (1981) A stratospheric fountain ?, J Atmos Sci 38: 2789

    Google Scholar 

  • Noxon JF (1979) NO2 2, global behavior. J Geophys Res 84: 7883–7888

    Google Scholar 

  • Plumb A, Mahlman TD (1984) Presented at the NASA Workshop on Stratospheric Processes, Feldafing, Germany, June 1984

    Google Scholar 

  • Pyle JA, Zavody AM, Harries JE, Modfot PH (1983) Derivation of OH concentration from satellite infrared measurements of NO2 and HNO3. Nature 305: 690–692

    Google Scholar 

  • Reiter R, McCormick MP (1982) SAGE-European ozonesonde comparisons. Nature 300: 337

    Google Scholar 

  • Remsberg EE, Russell JM III, Gille JC, Gordley LL, Bailey PL, Planet WG, Harries JE (1984a) The validation of Nimbus 7 LIMS measurements of ozone J Geophys Res 89:5161–5178, June 30 1984

    Google Scholar 

  • Remsberg EE, Russell JM III, Gordley LL, Gille JC, Bailey PL (1984b) Implications of the stratospheric water vapor distribution as determined from the NIMBUS 7 LIMS experiment. J Atmos Sci 41: 19 2934–2945 October 1984

    Google Scholar 

  • Remsberg EE, Russell JM III, Gordley LL, Gille JC, Bailey PL (1986) The climatology of stratospheric H2O measured by LIMS. To be submitted to J Geophys Res

    Google Scholar 

  • Remsberg EE, Kurzeja RJ, Haggard KV, Russell JM III, Gordley LL (1986) Description of the Nimbus 7 LIMS map archive tape, ozone and nitric acid. NASA TP, in preparation.

    Google Scholar 

  • Rodgers CD (1976) Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev Geophys Space Phys 14: 609–624

    Google Scholar 

  • Rodgers CD, Jones RL, Barnett JJ (1984) Retrieval of temperature and composition from NIMBUS 7 SAMS measurements. J Geophys Res 89:D4, June 30, 5280

    Google Scholar 

  • Rosen JM, 1964: J Geophys Res, 69, pp. 4673–4676

    Google Scholar 

  • Rusch DW, Mount GH, Barth CA, Thomas RJ, Callan MT (1984) Solar mesosphere explorer ultraviolet spectrometer: measurements of ozone in the 1.0–0.1 mb region. J Geophys Res 89: 11677–11687

    Google Scholar 

  • Russell JM III, Gille C (1978) The limb infrared monitor of the stratosphere (LIMS) experiment in the NIMBUS 7 users’s guide. Madrid CR (ed). NASA, Goddard Space Flight Center, Greenbelt, MA pp. 71–103

    Google Scholar 

  • Russell JM III (1984) The global distribution and variability of stratospheric constituents measured by LIMS. Adv Space Res 4: 4 107–116

    Google Scholar 

  • Russell JM III, Gille JC, Remsberg EE, Gordley LL, Bailey PL, Drayson SR, Fischer H, Girard A, Harries JE, Evans WFJ (1984a) Validation of nitrogen dioxide results measured by the limb infrared monitor of the stratosphere (LIMS) experiment on NIMBUS 7. J Geophys Res 89:D4, June 30, 5099–5107

    Google Scholar 

  • Russell JM, Gille JC, Remsberg EE, Gordley LL, Bailey PL, Fischer H, Girard A, Drayson SR, Evans WFJ, Harries JE (1984b) Validation of water vapor results measured by the limb infrared monitor of the stratosphere (LIMS) experiment on NIMBUS 7. J Geophys Res 89:D4 June 30, 5115–5124

    Google Scholar 

  • Russell JM III, Solomon S, Gordley LL, Remsberg EE, Callis LB (1984c) The variability of stratospheric and mesopheric NO2 in the polar winter night observed by LIMS. J Geophys Res 89:C8, August 20, 7267–7275

    Google Scholar 

  • Russell PB, McCormick MP (1989) SAGE II aerosol data validation and initial data use: an introduction and overview. J Geophys Res 94: 06, 8335–8338

    Google Scholar 

  • Russell JM III, Remsberg EE, Gordley LL, Gille JC, Bailey PL (1986) The climatology of strato-spheric NO2 measured by LIMS. to be submitted to J Geophys Res

    Google Scholar 

  • Russell PB, Swissler TJ, McCormick MP, Chu WP, Livingston JM, Pepin TJ (1981a) Satellite and correlative measurements of the stratospheric aerosol I: an optical model for data conversion. J Atmos Sci 36: 1279.

    Google Scholar 

  • Russell PB, McCormick MP, Swissler TJ, McMaster LR, Rosen JM, Hofmann DJ (1984) Satellite and correlative measurements of the stratospheric aerosol III: comparison of measurements by SAM II, SAGE, dustsondes, filters, impactors, and lidar. J Atmos Sci 41: 11

    Google Scholar 

  • Russell GM III. (ed) Middle atmosphere program. Handbook for MAP, vol. 22, TCSU, Sept 1986

    Google Scholar 

  • Schneider WH, Bhartia PK, Klenk KF, Mateer CL (1981) An optimum statistical technique for ozone profile retrieval from backscattered UV radiances. Paper presented at Fourth Conference on Atmospheric Radiation, Am. Meteorol. Soc., Toronto Ontario, Canada, June 16–18 1981

    Google Scholar 

  • Solomon S, Garcia RR (1984) On the distributions of long-lived tracers and chlorine species in the middle atmosphere. J Geophys Res 89: 11633–11644

    Google Scholar 

  • Solomon S, Reid GC, Rusch DW, Thomas RJ (1983a) Mesospheric ozone depletion during the solar proton event of July 13, 1982. Part II: comparison between theory and measurements. Geophys Res Lett 10: 4, 249

    Google Scholar 

  • Solomon S, Mount GH, Zawodny JM (1983b) Measurements of stratospheric NO2 from solar mesospheric explorer satellite 2 - general morphology of observed NO2 and derived N205. J Geophys Res 89: 7317

    Google Scholar 

  • Solomon S, Kiehl JT, Garcia RR, Grose WL (1985a) Tracer transport by the diabatic circulation deduced from satellite observations. Submitted to J Geophys Res

    Google Scholar 

  • Solomon S, Garcia RR, Olivero JJ, Bevilacqua RM, Schwartz PR, Clancy RT, Muhleman DO (1985b) Photochemistry and transport of carbon monoxide in the middle atmosphere. J Atmos Sci 42: 10, 1072–1083

    Google Scholar 

  • Solomon S, Kiehl JT, Kerridge Bi, Remsberg EE, Russell JM III (1986a) Evidence for non-local thermodynamic equilibrium in the v3 mode of mesopheric ozone. Submitted to J Geophys Res

    Google Scholar 

  • Solomon S, Russell JM III, McCormick MP (1986b) On the atmospheric photochemistry of NO3. To be submitted to J Atmos Sci

    Google Scholar 

  • Stordal F, Isaksen ISA, Horntveth K (1984) A diabatic circulation two-dimensional model with photochemistry: simulations of ozone and ground-released tracers. Submitted to J Geophys Res

    Google Scholar 

  • Thomas GE, Barth CA, Hansen ER, Hord CW, Lawrence GM, Mount GH, Rottman GJ, Rusch DW, Stewart Al, Thomas RJ, London J, Bailey PL, Crutzen PJ, Dickenson RE, Gille JC, Liu SC, Noxon JF, Farmer CB (1980) Scientific objectives of the solar mesosphere explorer mission. Pageoph 118: 591–615

    Google Scholar 

  • Thomas RJ, Barth CA, Rottmon GJ, Rusch DW, Mount GH, Lawrence GM, Saunders RW, Thomas GE, Clemens LE (1983) Ozone density distribution in the mesosphere (50–90 km) measured by the SME limb scanning near infrared spectrometer. Geophys Res Lett 10: 245

    Google Scholar 

  • Tung KK (1984) Proceedings of the U.S.-Japan seminar on middle atmosphere dynamics. Terra Scientific Pub, ( Tokyo )

    Google Scholar 

  • Yue GK, McCormick MP, Chu WP (1984) A comparative study of aerosol extinction measurements made by the SAM II and SAGE satellite experiments. J Geophys Res 89: 5321

    Google Scholar 

  • Wale MJ, Peskett GD (1984) Some aspects of the design and behavior of the stratospheric and mesospheric sounder. J Geophys Res 89:D4, June 30, 5287

    Google Scholar 

  • Wang PH, McCormick MP (1985) Variations in stratospheric aerosol optical depth during northern warmings. J Geophys Res 90: 10 597

    Google Scholar 

  • Aikin AC, Chanin ML, Nash J, Kendig DJ (1991) Temperature trends in the lower mesosphere. Geophys Res Lett 18 (3): 416–419

    Google Scholar 

  • Chanin M-L, Gelman ME (1989) Comparison between stratospheric temperature from NMC analyses and Lidar data. In: Lenoble J, Geleyn JF (eds) IRS’88: current problems in atmospheric radiation A Deepak Pub Hampton VA pp 536–538

    Google Scholar 

  • Chanin ML, Hauchecorne A (1981) Lidar observation of gravity and tidal waves in the stratosphere and mesosphere. J Geophys Res 86 (C10): 9715–9721

    Google Scholar 

  • Chanin ML, Hauchecorne A (1984) Lidar studies of temperature and density using Rayleigh scattering. MAP Handbook 13: 87–99

    Google Scholar 

  • Chanin ML, Hauchecorne A (1991) Lidar study of the structure and the dynamics of the middle atmosphere. Indian J Radio Space Phys 20: 1–11

    Google Scholar 

  • Chanin ML, Hauchecorne A Smires N (1985) Contribution to the CIRA model from ground-based lidar. MAP Handbook 16: 305–314

    Google Scholar 

  • Chanin ML, Smires N Hauchecorne A (1987) Long-term variation of the temperature of the middle atmosphere at mid-latitude: dynamical and radiative causes. J Geophys Res 92: 933–941

    Google Scholar 

  • Chanin M-L, Keckhut P, Hauchecorne A Labitzke K (1989) The solar activity -QBO effect — in the lower thermosphere. Ann Geophys 7: 463–470

    Google Scholar 

  • Chanin ML, Hauchecorne A, Smires N (1990) Contribution to the new reference atmosphere form ground based lidar CIRA, 1986, part II. Adv Space Res 10 (12): 211–216

    Google Scholar 

  • Gille ST, Hauchecorne A, Chanin ML (1991) Semidiumal and diurnal tidal effects in the middle atmosphere as seen by Rayleigh lidar. J Geophys Res 96 (D4): 7579–7587

    Google Scholar 

  • Hauchecorne A, (1985) Planetary waves–mean flow interaction in the middle atmosphere; lidar observations and modelisation. MAP Handbook 18: 80–88

    Google Scholar 

  • Hauchecorne A, Chanin ML (1980) Density and temperature profiles obtained by lidar between 35 and 70 km. Geophys Res lett 7: 565–568

    Google Scholar 

  • Hauchecorne A, Chanin ML (1982) A mid-latitude ground-based lidar study of stratospheric warmings and planetary wave propagation. J Atmos Teri Phys 44: 577–583

    Google Scholar 

  • Hauchecorne A, Chanin ML (1983) Mid-latitude lidar observations of planetary waves in the middle atmosphere during the winter of 1981–1982. J Geophys Res 88: 3843–3849

    Google Scholar 

  • Hauchecorne A, Chanin M-L (1988) Planetary waves — mean flow interaction in the middle atmosphere: modelisation and comparison with lidar observations. Ann Geophys 6: 409–416

    Google Scholar 

  • Hauchecorne A, Blix T, Gerndt R, Kokin GA, Meyer W, Shefov NN (1987a) Large-scale coherence of the mesospheric and upper stratospheric temperature fluctuations. J Atmos Ten Phys 49: 649–654

    Google Scholar 

  • Hauchecorne A, Chanin ML, Wilson R (1987b) Mesopheric temperature inversion and gravity wave breaking. Geophys Res Lett 14: 933–936

    Google Scholar 

  • Hauchecorne A, Chanin ML, Keckhut P (1991) Climatology of the middle atmospheric temperature (30–90 km) and trends as seen by Rayleigh lidar above the south of France. J Geophys Res 96 (D8):15. 297–15. 309

    Google Scholar 

  • Keckhut P, Chanin ML (1989) Seasonal variation of the 11-year solar effect on the middle atmosphere; rôle of the QBO. Handbook for Map 29: 33–38

    Google Scholar 

  • Kent GS, Wright RW (1970) A review of laser radar measurements of atmospheric properties. J Atmos Ten Phys 32: 917–943

    Google Scholar 

  • Labitzke K, Chanin ML (1988) Changes in the middle atmosphere in winter related to the 11-year solar cycle. Ann. Geophys 6: 643–644

    Google Scholar 

  • Wilson R, Hauchecorne A, Chanin ML (1990) Gravity wave spectra in the middle atmosphere as observed by Rayleigh lidar. Geophys Res Lett 7: 1585–1588

    Google Scholar 

  • Wilson R, Chanin ML, Hauchecorne A (1991a) Gravity waves in the middle atmosphere by Rayleigh lidar, Part. 1: Case studies. J Geophys Res 96 (D3): 5153–5167

    Google Scholar 

  • Wilson R, Chanin ML, Hauchecorne A (1991b) Gravity waves in the middle atmosphere by Rayleigh lidar, Part. 2: Climatology. J Geophys Res 96 (D3) 5169–5183

    Google Scholar 

  • Abreu VJ, Eastes RW, Yee JH, Solomon SC (1986) Ultraviolet nightglow production near the magnetic equator by neutral particle precipitation. J Geophys Res 91:11, 365–11, 368

    Google Scholar 

  • Allen CW (1963) Astrophysical quantities. Athlone Press, London

    Google Scholar 

  • Anderson DE, Jr Paxton LJ, McCoy RP, Meier RR (1987) Atomic hydrogen and solar Lyman a flux deduced from STP 78–1 UV observations. J Geophys Res 92: 8759–8766

    Google Scholar 

  • Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics. Academic Press, London

    Google Scholar 

  • Anger CD (1983) Advances in auroral imaging from spaces. Adv Space Res 2 (7): 97–105

    Google Scholar 

  • Barringer AR, Davies JH (1977) Satellite monitoring of atmospheric gases. J Br Interplan Soc 30: 183–186

    Google Scholar 

  • Basher RE (1982) Review of the Dobson spectrophotometer and its accuracy, WMO global ozone research and monitoring project, Rep 13. World Meteorological Organization, Geneva

    Google Scholar 

  • Basher RE (1985) Review of the Dobson spectrophotometer and its accuracy. In: Zefefos CS, Ghazi A(eds) Atmospheric Ozone. Reidel, Dordrecht, pp 387–391

    Google Scholar 

  • Browell EV, Ismail S, Shipley ST (1985) Ultraviolet DIAL measurements of 03 profiles in regions of spatially inhomogeneous aerosols. Appl Opt 24: 2827–2836

    Google Scholar 

  • Conway RR, Meier RR, Strobel DF, Huffman RE (1987) The far ultraviolet vehicle glow of the S3–4 satellite. Geophys Res Lett 14: 628–631

    Google Scholar 

  • Conway RR, Meier RR, Huffman RE (1988) Satellite observations of the 0 I 1304, 1356 and 1641 A dayglow and the abundance of atomic oxygen in the thermosphere. Planet Space Sci 36: 963–973

    Google Scholar 

  • DeLuisi JJ (1979) Shortened version of the Umkehr method for observing the vertical distribution of ozone. Appl Opt 18: 3190–3197

    Google Scholar 

  • DeLuisi JJ, Mateer CL, Bhartia PK (1985a) On the correspondence between standard Umkehr, short Umkehr and solar backscattered ultraviolet vertical ozone profiles. J Geophys Res 90: 3845–3849

    Google Scholar 

  • DeLuisi JJ, Mateer CL, Komhyr WD (1985b) Effects of the El Chichon stratospheric aerosol cloud on Umkehr measurements at Mauna Loa, Hawaii. In: Zerefos CS, Ghazi A(eds) Atmospheric Ozone. Reidel, Dordrecht, pp 316–320

    Google Scholar 

  • DeLuisi JJ, Longenecker DU, Mateer CL, Wuebbles DJ (1989) An analysis of northern middle-latitude Umkehr measurements corrected for stratospheric aerosols for 1979–1986. J Geophys Res 94: 9837–9846

    Google Scholar 

  • Dobson GMB (1931) A photoelectric spectrophotometer for measuring the amount of atmospheric ozone. Proc Phys Soc Lond 43: 324–339

    Google Scholar 

  • Dobson GMB (1957a) III-Observers’ handbook for the ozone spectrophotometer. In: Ann Int Geophys Years 5, Part I ozone: Pergamon, London, pp 46–89

    Google Scholar 

  • Dobson GMB (1957b) IV-Adjustment and calibration of ozone spectrophotometer. In: Ann Int Geophys Year 5, part I ozone Pergamon, London, pp 90–144

    Google Scholar 

  • Dobson GMB (1968) Forty years research on atmospheric ozone at Oxford: a history. Appl Opt 7: 387–405

    Google Scholar 

  • Elachi C (1987) Introduction to the physics and techniques of remote sensing. Wiley, New York

    Google Scholar 

  • Frank LA, Craven JD, Rairden RL (1985) Images of the Earths aurora and geocorona from the Dynamics Explorer mission, Adv Space Res 5: 53–68

    Google Scholar 

  • Frederick JE, Cebula RP, Heath DF (1986) Instrument characterization for the detection of longterm changes in stratospheric ozone: an analysis of the SBUV/2 radiometer. J Atmos Ocean Tech 3: 472–480

    Google Scholar 

  • Fredriksson KA (1988) Differential absorption lidar for pollution mapping. In: Measures RM(ed) Laser remote chemical analysis. Wiley, New York, pp 273–332

    Google Scholar 

  • Gogoshev MM, Sargoychev SI, Mendev ID, Balebanov VM, Smirnova LP, Bassolo VS (1987) Spectrophotometric observations of the auroras in the far 15V range on board the Intercosmos-Bulgaria-1300 satellite during the magnetic storm of 2–3 March 1982. Adv Space Res 7 (8): 11–13

    Google Scholar 

  • Grass RD (1987) Observers’ manual, Dobson ozone spectrophotometer, limited observing program, 4th edn. NORA, US Dept Commerce, Boulder

    Google Scholar 

  • Grass RD, Komhyr WD (1985) Traveling standard lamp calibration checks on Dobson ozone spectrophotometers during 1981–83. In: Zerefos CS, Ghazi A(eds) Atmospheric ozone. Reidel, Dordrecht, pp 376–380

    Google Scholar 

  • Green AES, Talman JD (1980) Remote sensing of ozone in the middle ultraviolet. In: Deepak A(ed) Remote sensing of atmospheres and oceans. Academic Press, New York, pp 171–218

    Google Scholar 

  • Hamilton PM, Varey RH, Millan MM (1978) Remote sensing of sulphur dioxide. Atmos Environ 12: 127–133

    Google Scholar 

  • Heath DF (1988) Non-seasonal changes in total column ozone from satellite observations, 1970–86. Nature 332: 219–227

    Google Scholar 

  • Heath DF, Krueger AJ, Roeder HA, Henderson BD (1975) The solar backscatter ultraviolet and total ozone mapping spectrometer ( SBUV/TOMS) for NIMBUS G. Opt Eng 14: 323–331

    Google Scholar 

  • Inomata H, Carswell AI (1977) Simultaneous tunable two-wavelength ultraviolet dye laser. Opt Commun 22: 278–282

    Google Scholar 

  • Keating GM, Frank L, Craven J, Shapiro M, Young D, Bhartia P (1983) Global piétures of the ozone field, from high altitudes, from DE-I. Adv Space Res 2 (5): 183–188

    Google Scholar 

  • Kerr JB, McElroy CT, Wardle DI, Olafson RA, Evans WFJ (1985) The automated Brewer spectrophotometer. In: Zerefos CS, Ghazi A (eds) Atmospheric Ozone, Dordrecht, pp 396–401

    Google Scholar 

  • Kerr JB, Asbridge IA, Evans WFJ (1988) Intercomparison of total ozone measured by the Brewer and Dobson spectrophotometers at Toronto. J Geophys Res 93:11, 129–11, 140

    Google Scholar 

  • Köhler U, Hartmannsgruber R, Attmannspacher W (1985) Experiences with a Brewer spectrophotometer and intercomparison measurements with a Dobson spectrophotometer. In: Zerefos CS, Ghazi A (eds) Atmospheric ozone. Reidel, Dordrecht, pp 402–406

    Google Scholar 

  • Komhyr WD (1980a) Dobson spectrophotometer systematic total ozone measurement error. Geophys Res Lett 7: 161–163

    Google Scholar 

  • Komhyr WD (1980b) Operations handbook - ozone observations with a Dobson spectrophotometer, WMO global ozone research and monitoring project, Rep 6. NOAA ERL ARL, Boulder, Colorado

    Google Scholar 

  • Komhyr WD, Evans RD (1980) Dobson spectrophotometer total ozone measurement errors caused by interfering absorbing species such as SO2, NO2, and photochemically produced 03 in polluted air. Geophys Res Lett 7: 157–160

    Google Scholar 

  • Komhyr WD, Grass RD, Leonard RK (1989a) Calibration of primary standard Dobson spectrophotometer no. 83 and total ozone trends at Mauna Loa observatory, Hawaii, and American Samoa, South Pacific. In: Ozone in the Atmosphere Proc. Quadrennial Ozone Symposium and Tropospheric Ozone Workshop, Bojkov CS, Fabian A(eds) A. Deepak publ., Hampton, VA 85–87

    Google Scholar 

  • Komhyr WD, Grass RD, Leonard RK (1989b) Dobson spectrophotometer 83: a standard for total ozone measurements, 1962–1987. J Geophys Res 94: 9847–9861

    Google Scholar 

  • Krueger AJ, Heath DF, Mateer CL (1973) Variations in the stratospheric ozone field inferred from Nimbus satellite observations. Pure Appl Geophys 106: 1254–1263

    Google Scholar 

  • Link R, Chakrabarti S, Gladstone GR, McConnell JC (1988) An analysis of satellite observations of the O I EUV dayglow. J Geophys Res 93: 2693–2714

    Google Scholar 

  • Maddox J (1988) where the world stands on ozone (unsigned editorial). Nature 332:291

    Google Scholar 

  • McCoy RP, Anderson DE, Jr Chakrabarti S (1985) F2 region ion densities from analysis of O+ 834-A airglow: a parametric study and comparisons with satellite data. J Geophys Res 90:12, 257–12, 264

    Google Scholar 

  • McCoy RP, Paxton LJ, Meier RR, Cleary DD, Prinz DK, Wolfram KD, Christensen AB, Pranke JB, Kayser DC (1987) RAIDS: An orbiting observatory for ionospheric remote sensing from space. In: Goodman JM(ed) The effect of the ionosphere on communication, navigation, and surveillance systems. Naval Res Lab, Washington, DC, pp 519–525

    Google Scholar 

  • Measures RM (1988) Fundamentals of laser remote sensing. In: Measures RM(ed) Laser remote chemical analysis. Wiley, New York, pp 1–84

    Google Scholar 

  • Megie G (1988) Laser measurements of atmospheric trace constituents. In: Measures RM(ed) Laser remote chemical analysis, Wiley, New York, pp 333–408

    Google Scholar 

  • Meier RR (1987a) Issues relating to “holes” in the 0I 1304 A far u.v. dayglow. Planet Space Sci 35: 1297–1299

    Google Scholar 

  • Meier RR (1987b) Thermospheric aurora and airglow. Rev Geophys 25: 471–477

    Google Scholar 

  • Meier RR, Anderson DE, Jr (1983) Determination of atmospheric composition and temperature from the U.V. airglow. Planet Space Sci 31: 967–976

    Google Scholar 

  • Meier RR, Conway RR, Anderson DE, Jr Feldman PD, Eastes RW, Gentieu EP, Christensen AB (1985) The ultraviolet dayglow at solar maximum 3. Photoelectron-excited emissions of N2 and O. J Geophys Res 90: 6608–6616

    Google Scholar 

  • Mende SB, Swenson GR, Llewellyn EJ (1987) Space vehical optical contamination by ram glow. In: Goodman JM(ed) The effect of the ionosphere on communication, navigation, and surveillance systems. US Naval Res Lab, Washington, DC, pp 465–481

    Google Scholar 

  • Meng C-I, Huffman RE (1984) Ultraviolet imaging from space of the aurora under full sunligt. Geophys Res Lett 11: 315–318

    Google Scholar 

  • Meng CI, Babcock RR, Huffman RE (1983) Ultraviolet imaging for auroral zone remote sensing. In: Proc AIAA 21st Aerospace Sciences Meeting, paper AIAA-83–0019. AIAA, New York

    Google Scholar 

  • Morrison MD, Meier RR (1988) The OI 989 and 1173 A multiplets in the dayglow. Planet Space Sci 36: 987–1003

    Google Scholar 

  • Ohle KH, Sonnemann G, Fichtelmann B (1984) Mesospheric ozone densities deduced from solar occultation measurements. Adv Space Res 4 (6): 69–72

    Google Scholar 

  • Park H, Heath DF (1985) NIMBUS7 SBUV/TOMS calibration for the ozone measurement. In: Zerefos CS, Ghazi A (eds) Atmospheric ozone. Reidel, Dordrecht, pp 412–416

    Google Scholar 

  • Paur RJ, Bass AM (1985) The ultraviolet cross-sections of ozone: II. Results and temperature de- pendence. In: Zerofos CS, Ghazi A (eds) Atmospheric ozone. Reidel, Dordrecht, pp 611–616

    Google Scholar 

  • Pelon J, Megie G (1982) Ozone vertical distribution and total content using a ground-based active remote sensing technique. Nature 299: 137–139

    Google Scholar 

  • Rusch D, Mount GH, Barth CA, Thomas RI, Callan MT (1984) Solar mesosphere explorer ultraviolet spectrometer: measurements of ozone in the 1.0–0.1 mbar region. J Geophys Res 89:11, 677–11, 687

    Google Scholar 

  • Suzuki K, Ogawa T, Kandokura S (1985) The BUV experiment for the satellite OHZORA. J Geomag Geoelectr 37: 225–236

    Google Scholar 

  • Taylor SL, Bhartia PK, Kaveeshwar VG, Klenk KF, Fleig AJ, Mateer CL (1980) Role of multiple scattering in ozone profile retrieval from satellite measurements in the ultraviolet. In: Deepak A (ed) Remote sensing of atmospheres and oceans. Academic Press, New York, pp 219–230

    Google Scholar 

  • Uchino O, Tokunaga M, Maeda M, Miyazoe Y (1983) Differential-absorption-lidar measurement of tropospheric ozone with excimer-Raman hybrid laser. Opt Lett 8: 347–349

    Google Scholar 

  • Vigroux E (1967) Determination des coefficients moyens d’absorption de l’ozone en vue des observations concernant l’ozone atmosphérique a l’aide du spectromètre Dobson. Ann Phys 2: 209–215

    Google Scholar 

  • Watson RT and Ozone Trends Panel, Prather MJ and AdHoc Theory Panel, Kurylo MJ and NASA Panel for Data Evaluation (1988) Present state of knowledge of the upper atmosphere 1988: an assessment report. NASA Ref Publ 1208, NASA Of Sp Sci & Appl, Washington, D C

    Google Scholar 

  • Yarger DN (1970) An evaluation of some methods of estimating the vertical distribution from the inversion of spectral ultraviolet radiation. J Appl Meteorol 9: 921–928

    Google Scholar 

  • Akasofu SI (1968) Polar and magnetospheric substorms. Astrophysics and Space Science Library. Springer, Berlin Heidelberg New York, pp 110–125

    Google Scholar 

  • Anderson KA, Enemark DC (1960) Balloon observations of X-rays in the auroral zone II. JGR 65: 352–3528

    Google Scholar 

  • Anderson KA (1961) Cosmic-ray photons below cascade energy. Phys Rev 123: 1435–1439

    Google Scholar 

  • Angel JRP (1979) Lobster eyes as X-ray telescopes. Ap J 233: 364–373

    Google Scholar 

  • Aschenbach B (1985) X-ray telescopes. Rep Prog Phys 48: 579–629

    Google Scholar 

  • Bailey DK, Pomerantz MA (1965) Relativistic electron precipitation into the mesosphere at subauroral latitudes. JGR 70: 5823–5830

    Google Scholar 

  • Bailey DK (1968) Some quantitative aspects of electron precipitation in and near the auroral zone. Rev Geophys 6: 289–346

    Google Scholar 

  • Baker DN, Blake JB, Gomey DJ, Higbie PR, Klebesadel RW, King JH (1987) Highly relativistic magnetospheric electrons: a role in coupling to the middle atmosphere? GRL 14: 1027–1030

    Google Scholar 

  • Barcus JR, Brown RR (1966) Auroral-zone X-rays, 2. Spectral variability and auroral absorption. JGR 71: 825–834, 1966

    Google Scholar 

  • Barcus JR, Rosenberg TJ (1966) Energy spectrum for auroral-zone X-rays, 1. Diurnal and type effects. JGR 71: 803–823

    Google Scholar 

  • Barcus JR, Goldberg RA (1981) X-ray scanning of overhead aurorae from rockets. J Atmos Ten Phys 43: 1003–1013

    Google Scholar 

  • Bhaysar PD (1961) Scintillation-counter observations of auroral X-ray during the geomagnetic storm of May 12, 1959. JGR 66: 679–692

    Google Scholar 

  • Brown RR (1966) Electron precipitation in the auroral zone. Space Sci Rev 5: 311–387

    Google Scholar 

  • Caroli E, Stephen JB, Di Cocco G, Natalucci L, Spizzichino A (1987) Coded aperture imaging in X- and gamma-ray astronomy. Space Sci Rev 45: 349–403

    Google Scholar 

  • Chupp EL, Starkady AA, Gilman HP (1967) The 0.5 MeV gamma-ray flux and the energy loss spectrum in CsI(TI) at 4 gm cm-2. Plan Space Sci 15: 881–892

    Google Scholar 

  • Datlowe DW, Imhof WL, Voss HD (1988) X-ray spectral images of energetic electrons precipitating in the auroral zone. JGR 93: 8662–8680

    Google Scholar 

  • Dicke RH (1968) Scatter hole cameras for X-rays and gamma rays. Ap J 153: L101 - L106

    Google Scholar 

  • Dunphy PP, Forrest DJ, Chupp EL, Cherry ML, Ryan JM (1981) Limit on a galactic 6.13 MeV gamma-ray line. Ap J 244: 1081–1086

    Google Scholar 

  • Fink HH, Schmitt JHMM, Hamden FR (1988) The scattered solar X-ray background in low earth orbit. Astron Astrophys 193: 345–356

    Google Scholar 

  • Goldberg RA, Barcus JR, Treinish LA, Vondrak RR (1982) Mapping of auroral X-rays from rocket overflights. JGR 87: 2509–2524

    Google Scholar 

  • Gosling TJ (1966) The localization and motion of energetic electron precipitation during magnetic bays. JGR 71: 835–848

    Google Scholar 

  • Imhof WL (1981) Review of energetic (larger 20 keV) bremsstrahlung X-ray measurements from satellites. Space Sci Rev 29: 201–217

    Google Scholar 

  • Imhof WL, Nakano GH, Johnson RG, Reagan JB (1974) Satellite observations of bremsstrahlung from widespread energetic electron precipitation events. JGR 79: 565–574

    Google Scholar 

  • Jones FC (1961) Cosmic-ray production of low energy gamma rays. JGR 66: 2029–2042

    Google Scholar 

  • Klumpar DM, Lockwood LA, Onge RN St, Friling LA (1973) Energy spectrum and flux of 3–20 MeV neutrons and 1–10 MeV gamma rays in the atmosphere. JGR 78: 7959–7967

    Google Scholar 

  • Kremser G, Bjordal J, Block LP, Bronstad K, Haavaag M, Iversen IB, Kangas J, Korth A, Madsen MM, Niskanen J, Riedler W, Stadsnes J, Tanskanen P, Torkar KM, Ullaland SL (1982) Coordinated balloon-satellite observations of energetic particles at the onset of a magnetospheric substorm. JGR 87: 4445–4453

    Google Scholar 

  • Letaw JR, Share GH, Kinzer RL, Silberberg R, Chupp EL, Forrest DJ, Rieger E (1989) Satellite observation of atmospheric nuclear gamma radiation. JGR 94: 1211–1221

    Google Scholar 

  • Ling JC (1975) A semiempirical model for atmospheric gamma rays from 0.3 to 10 MeV at 40° geomagnetic latitude. JGR 80: 3241–3252

    Google Scholar 

  • Ling JC, Gruber DE (1977) Spectra and angular distributions of atmospheric gamma rays from 0.3 to 10 MeV at A = 40°. JGR 82: 1211–1226

    Google Scholar 

  • Loidl A, Schwentek H (1977) Intensity of solar X-rays in the E-region measured by proportional counters carried on rockets. J Geophys 44: 117–123

    Google Scholar 

  • Luhmann JG (1977) Auroral bremsstrahlung spectra in the atmosphere. J Atmos Terr Phys 39: 595–600

    Google Scholar 

  • Luhmann JG, Blake JB (1977a) Calculations of soft auroral bremsstrahlung and K-a line emission at satellite altitude. J Atmos Terr Phys 39: 913–919

    Google Scholar 

  • Luhmann JG, Blake JB (1977b) K-shell X-ray fluxes at satellite altitude from proton precipitation. J Atmos Terr Phys 40: 471–473

    Google Scholar 

  • Matthews DL, Rosenberg TJ, Benbrook JR, Bering EA (1988) Dayside energetic electron precipitation over the south pole (J = 75°). JGR 93:12 941–12 945

    Google Scholar 

  • Mauk BH, Chin J, Parks G (1981) Auroral X-ray images. JGR 86: 6827–6835

    Google Scholar 

  • McKenzie DL, Rugge HR, Charles PA (1982) Soft X-rays from the sunlit earth’s atmosphere. J Atmos Terr Phys 44: 499–508

    Google Scholar 

  • Meredith LH, Gottlieb MB, Van Allen JA (1955) Direct detection of soft radiation above 50 kilometers in the auroral zone. Phys Rev 97: 201–205

    Google Scholar 

  • Mertz L, Young N (1962) Fresnel transformations of images, In: Proceedings of the Conference on Optical Instruments and Techniques. Chapman and Hall, London 1961, pp 305–312

    Google Scholar 

  • Mizera PF, Gomey DJ, Roeder JL (1984) Auroral X-ray images from DMSP-F6. GRL 11: 255–258

    Google Scholar 

  • Mizera PF, Luhmann JG, Kolasinski WA, Blake JB (1978) Correlated observations of auroral arcs, electrons, and X-rays from a DMSP satellite. JGR 83: 5573–5578

    Google Scholar 

  • Nicolet M, Aikin AC (1960) The formation of the D-region of the ionosphere. JGR 65: 1469–1483

    Google Scholar 

  • Peterson LE (1963) The 0.5 MeV gamma-ray and the low energy gamma-ray spectrum to 6 grams per square centimeter over Minneapolis. JGR 68: 979–987

    Google Scholar 

  • Peterson LE, Schwartz DA, Ling JC (1973) Spectrum of atmospheric gamma rays to 10 MeV at A = 40°. JGR 78: 7942–7958

    Google Scholar 

  • Pfotzer G (1936) Dreifachkoinzidenzen der Ultrastrahlung aus vertikaler Richtung in der Stratosphäre, I. Messmethode and Ergebnisse. Z Phys 102: 23–40

    Google Scholar 

  • Poppoff IG, Whitten RC, Edmonds RS (1964) The role of nonflare X radiation in the D region. JGR 69: 4081–4085

    Google Scholar 

  • Rees MH (1964) Ionization in the earth’s atmosphere by aurorally associated bremsstrahlung X-rays. Plan Space Sci 12: 1093–1108

    Google Scholar 

  • Rosenberg TJ (1965) Observations on the association of auroral luminosity with auroral X-rays and cosmic noise absorption. J Atmos Ten Phys 27: 751–759

    Google Scholar 

  • Rosenberg TJ, Lanzerotti LJ, Bailey DK, Pierson JD (1972) Energy spectra in relativistic electron precipitation events. J Atmos Ten Phys 34: 1977–1990

    Google Scholar 

  • Schmidt WKH (1975) A proposed X-ray focusing device with wide field of view for use in X-ray astronomy. Nucl Instr Meth 127: 285–292

    Google Scholar 

  • Schmidt WKH (1981) Wide angle X-ray optics for use in astronomy. Space Sci Rev 30: 615–621

    Google Scholar 

  • Seltzer SM, Berger MJ (1974) Bremsstrahlung in the atmosphere at satellite altitudes. J Atmos Ten Phys 36: 1283–1287

    Google Scholar 

  • Sengupta PR (1980) Solar X-ray control of the D-region of the ionosphere. J Atmos Ten Phys 42: 339–355

    Google Scholar 

  • Seward FD, Horton B, Pollard G, Sanford PW (1976) Argon fluorescent X-rays in the earth’s atmosphere during solar flares. Nature 264: 421–423

    Google Scholar 

  • Swider W (1969) Ionization rates due to the attenuation of 1–100 A nonflare solar X-rays in the terrestrial atmosphere. Rev Geophys 7: 573–595

    Google Scholar 

  • Thomas L (1971) The lower ionosphere. J Atmos Ten Phys 33: 157–195

    Google Scholar 

  • Thorne RM (1980) The importance of energetic particle precipitation on the chemical composition of the middle atmosphere. Pure Appl Geophys 118: 128–151

    Google Scholar 

  • Tucker WH, Koren MV (1971) Radiation from a high-temperature, low-density plasma: The X-ray spectrum of the solar corona. Astrophys J 168: 283–311

    Google Scholar 

  • Vondrak RR, Robinson RM, Mizera PF, Gorney DJ (1988) X-ray spectrophotometric remote sensing of diffuse auroral ionization. Radio Sci 23: 537–544

    Google Scholar 

  • Walt M, Newkirk LL, Francis WE (1979) Bremsstrahlung produced by precipitating electrons. JGR 84: 967–973

    Google Scholar 

  • Winckler JR, Peterson L (1957) Large auroral effect on cosmic-ray detectors observed at 8 g cm-2 atmospheric depth. Phys Rev 108: 903–905 (Lett)

    Google Scholar 

  • Winckler JR, Peterson L, Arnoldy R, Hoffman R (1958) X-rays from visible aurorae at Minneapolis. Phys Rev 110: 1221–1231

    Google Scholar 

  • Winckler JR, Peterson L, Hoffman R, Arnoldy R (1959) Auroral X-rays, cosmic rays, and related phenomena during the storm of February 10–11, 1958. JGR 64: 597–610

    Google Scholar 

  • Winkler JR, Bhaysar PD, Anderson KA (1962) A study of the precipitation of energetic electrons from the geomagnetic field during magnetic storms. JGR 67: 3717–3736

    Google Scholar 

  • Wolter H (1952a) Spiegelsysteme streifenden Einfalls als abbildende Optiken far Röntgenstrahlen. Ann Phys (6) 10: 94–114

    Google Scholar 

  • Wolter H (1952b) Verallgemeinerte Schwarzschildsche Spiegelsysteme streifender Reflexion als Optiken fiir Röntgenstrahlen. Ann Phys (6) 10: 286–295

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dieminger, W., Hartmann, G.K., Leitinger, R. (1996). Electromagnetic Waves in the Upper Atmosphere. In: Dieminger, W., Hartmann, G.K., Leitinger, R. (eds) The Upper Atmosphere. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78717-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78717-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78719-5

  • Online ISBN: 978-3-642-78717-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics