Skip to main content

The β Sliding Clamp of E. coli DNA Polymerase III Holoenzyme Balances Opposing Functions

  • Chapter
Nucleic Acids and Molecular Biology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 8))

  • 738 Accesses

Abstract

The β subunit of E. coli DNA polymerase III holoenzyme (pol III holoenzyme) anchors this multiprotein chromosomal replicase to DNA for fast and highly processive replication (Kornberg and Baker 1991; Stukenberg et al. 1991). Its ring shape (Fig. 1) allows it to completely encircle DNA while freely diffusing along the duplex (Stukenberg et al. 1991; Kong et al. 1992). The β “sliding clamp” confers onto pol III holoenzyme a high degree of processivity (50kb; Fay et al. 1981) and a rapid speed of synthesis (750 nucleotides/s; O’Donnell and Kornberg 1985) which results from the continual proximity of the polymerase and DNA through their mutual association with β (Stukenberg et al. 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arai N, Kornberg A (1981) Rep protein as a helicase in an active, isolatable replication fork of duplex Φχ174 DNA. J Biol Chem 256:5294–5298

    PubMed  CAS  Google Scholar 

  • Blinkowa AL, Walker JL (1990) Programmed ribosomal frameshifiting generates the Escherichia coli DNA polymerase III γ subunit from within the τ subunit reading frame. Nucleic Acids Res 18:1725–1729

    Article  PubMed  CAS  Google Scholar 

  • Bonner CA, Stukenberg PT, Rajagopalan M, Eritja R, O’Donnell M, McEntee K, Echols H, Goodman MF (1992) Processive DNA synthesis by DNA polymerase II mediated by DNA polymerase III accessory proteins. J Biol Chem 267:11431–11438

    PubMed  CAS  Google Scholar 

  • Bravo R, Frank R, Blundell PA, Macdonald-Bravo H (1987) Cyclin/PCNA is the auxiliary protein of DNA polymerase delta. Nature 326:515–517

    Article  PubMed  CAS  Google Scholar 

  • Burgers PMJ (1991) Saccharomyces cerevisiae replication factor C. II. Formation and activity of complexes with proliferating cell nuclear antigen and with DNA polymerases δ and ε. J Biol Chem 266:22698–22706

    PubMed  CAS  Google Scholar 

  • Burgers PMJ, Kornberg A (1982a) ATP activation of DNA polymerase III holoenzyme from Escherichia coli. I. ATP dependent formation of an initiation complex with a primed template. J Biol Chem 257:11468–11473

    PubMed  CAS  Google Scholar 

  • Burgers PMJ, Kornberg A (1982b) ATP activation of DNA polymerase III holoenzyme from Escherichia coli. II. Initiation complex: stoichiometry and reactivity. J Biol Chem 257:11474–11478

    PubMed  CAS  Google Scholar 

  • Burgers PMJ, Kornberg A (1983) The cycling of Escherichia coli DNA polymerase III holoenzyme in replication. J Biol Chem 258:7669–7675

    PubMed  CAS  Google Scholar 

  • Burgers PMJ, Kornberg A, Sakakibara Y (1981) The dnaN gene codes for the β subunit of DNA polymerase III holoenzyme. Proc Natl Acad Sci USA 78:5391–5395

    Article  PubMed  CAS  Google Scholar 

  • Carter JR, Franden MA, Aebersold R, McHenry CS (1992) Molecular cloning sequencing and overexpression of the structural gene encoding the delta subunit of Escherichia coli DNA polymerase III holoenzyme. J Bacteriol 174:7013–7025

    PubMed  CAS  Google Scholar 

  • Dong Z, Onrust R, Skangalis M, O’Donnell M (1993) DNA polymerase III accessory proteins. I. holA and holB encoding δ and δ′. J Biol Chem 268:11758–11765

    PubMed  CAS  Google Scholar 

  • Fay PJ, Johanson KO, McHenry CS, Bambara RA (1981) Size classes of products synthesized processively by DNA polymerase III and DNA polymerase III holoenzyme of Escherichia coli. J Biol Chem 256:976–983

    PubMed  CAS  Google Scholar 

  • Flower AM, McHenry CS (1990) The γ subunit of DNA polymerase III holoenzyme of Esherichia coli is produced by ribosomal frameshifting. Proc Natl Acad Sci USA 87:3713–3717

    Article  PubMed  CAS  Google Scholar 

  • Gogol EP, Young MC, Kubasek WL, Jarvis TC, von Hippel PH (1992) Cryoelectron microscopic visualization of functional subassemblies of the bacteriophage T4 DNA replication complex. J Mol Biol 224:395–412

    Article  PubMed  CAS  Google Scholar 

  • Herendeen DR, Kassavetis GA, Barry J, Alberts BM, Geiduschek EP (1989) Enhancement of bacteriophage T4 late transcription by components of the T4 DNA replication apparatus. Science 245:952–958

    Article  PubMed  CAS  Google Scholar 

  • Herendeen DR, Williams KP, Kassavetis GA, Geiduschek EP (1990) An RNA polymerase-binding protein that is required for communication between an enhancer and a promoter. Science 248:573–578

    Article  PubMed  CAS  Google Scholar 

  • Herendeen DR, Kassavetis GA, Geiduschek EP (1992) A transcriptional enhancer whose function imposes a requirement that proteins track along DNA. Science 256:1298–1303

    Article  PubMed  CAS  Google Scholar 

  • Huang C-C, Hearst JE, Alberts BM (1981) Two types of replication proteins increase the rate at which T4 DNA polymerase traverses the helical regions in a single-stranded DNA template. J Biol Chem 256:4087–4094

    PubMed  CAS  Google Scholar 

  • Hughes JA Jr, Bryan SK, Chen H, Moses RE, McHenry CS (1991) Escherichia coli DNA polymerase II is stimulated by DNA polymerase III holoenzyme auxiliary subunits. J Biol Chem 266:4568–4573

    PubMed  CAS  Google Scholar 

  • Jarvis TC, Paul LS, von Hippel PH (1989) Structural and enzymatic studies of the T4 DNA replication system. I. Physical characterization of the polymerase accessory protein complex. J Biol Chem 264:12709–12716

    PubMed  CAS  Google Scholar 

  • Jarvis TC, Newport JW, von Hippel PH (1991) Stimulation of the processivity of the DNA polymerase of bacteriophage T4 by the polymerase accessory proteins. J Biol Chem 266:1820–1840

    Google Scholar 

  • Johanson KO, McHenry CS (1982) The β subunit of the DNA polymerase III holoenzyme becomes inaccessible to antibody after formation of an initiation complex with primed DNA. J Biol Chem 257:12310–12315

    PubMed  CAS  Google Scholar 

  • Kissinger CR, Liu B, Martin-Blanco E, Kornberg TB, Pabo CO (1990) Crystal structure of an engrailed homeodomain-DNA complex at 2.8 angstrom resolution: a framework for understanding homeodomain-DNA interactions. Cell 63:579–590

    Article  PubMed  CAS  Google Scholar 

  • Kong X-P, Onrust R, O’Donnell M, Kuriyan J (1992) Three dimensional structure of the β subunit of Escherichia coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 69:425–437

    Article  PubMed  CAS  Google Scholar 

  • Kornberg A (1988) DNA replication. J Biol Chem 263:1–4

    PubMed  CAS  Google Scholar 

  • Kornberg A, Baker TA (1991) DNA replication. WH Freeman, New York, pp 165–207

    Google Scholar 

  • Kwon-Shin O, Bodner JB, McHenry CS, Bambara RA (1987) Properties of initiation complexes formed between Escherichia coli DNA polymerase III holoenzyme and primed DNA in the absence of ATP. J Biol Chem 262:2121–2130

    PubMed  CAS  Google Scholar 

  • LaDuca RJ, Crute JJ, McHenry CS, Bambara RA (1986) The β subunit of the Escherichia coli DNA polymerase III holoenzyme interacts functionally with the catalytic core in the absence of other subunits. J Biol Chem 261:7550–7557

    PubMed  CAS  Google Scholar 

  • Lee S-H, Kwong AD, Pan Z-H, Hurwitz J (1991) Studies on the activator 1 protein complex, and accessory factor for proliferating cell nuclear antigen-dependent DNA polymerase δ. J Biol Chem 266:594–602

    PubMed  CAS  Google Scholar 

  • Mace DC, Alberts BM (1984) Characterization of the stimulatory effect of T4 gene 45 protein and the gene 44/62 protein complex on DNA synthesis by T4 DNA polymerase. J Mol Biol 177:313–327

    Article  PubMed  CAS  Google Scholar 

  • Maki H, Kornberg A (1985) The polymerase subunit of DNA polymerase III of Escherichia coli. J Biol Chem 260:12987–12992

    PubMed  CAS  Google Scholar 

  • Maki S, Kornberg A (1988) DNA polymerase III holoenzyme of Escherichia coli. II. A novel complex including the y subunit essential for processive synthesis. J Biol Chem 263:6555–6560

    PubMed  CAS  Google Scholar 

  • McHenry CS (1982) Purification and characterization of DNA polymerase III. Identification of τ as a subunit of the DNA polymerase III holoenzyme. J Biol Chem 257:2657–2663

    PubMed  CAS  Google Scholar 

  • McHenry CS (1991) DNA polymerase III holoenzyme. J Biol Chem 266:19127–19130

    PubMed  CAS  Google Scholar 

  • McHenry CS, Crow W (1979) DNA polymerase III of Escherichia coli. J Biol Chem 254:1748–1753

    PubMed  CAS  Google Scholar 

  • Mok M, Marians KJ (1987) The Escherichia coli preprimosome and DNA B helicase can form replication forks that move at the same rate. J Biol Chem 262:16644–16654

    PubMed  CAS  Google Scholar 

  • Munn MM, Alberts BM (1991a) The T4 DNA polymerase accessory proteins form an ATP-dependent complex on a primer-template junction. J Biol Chem 266:20024–20033

    PubMed  CAS  Google Scholar 

  • Munn MM, Alberts BM (1991b) DNA footprinting studies of the complex formed by the T4 DNA polymerase holoenzyme at a primer-template junction. J Biol Chem 266:20034–20044

    PubMed  CAS  Google Scholar 

  • Nicholls A, Sharp KA, Honig B (1991) Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins: Struct Funct Genet 11:281–296

    Article  CAS  Google Scholar 

  • Nossal NG, Alberts BM (1983) Mechanism of DNA replication catalyzed by purified T4 replication proteins. In: Mathews CK, Kutter EM, Mosig G, Berget PB (eds) Bacteriophage T4. American Society for Microbiology, Washington, DC, pp 71–81

    Google Scholar 

  • O’Donnell M (1987) Accessory proteins bind a primed template and mediate rapid cycling of DNA polymerase III holoenzyme from Escherichia coli. J Biol Chem 262:16558–16565

    PubMed  Google Scholar 

  • O’Donnell M (1992) Accessory protein function in the DNA polymerase III holoenzyme from E. coli. BioEssays 14:105–111

    Article  PubMed  Google Scholar 

  • O’Donnell M, Kornberg A (1985) Dynamics of DNA polymerase III holoenzyme of Escherichia coli in replication of a multiprimed template. J Biol Chem 260:12875–12883

    PubMed  Google Scholar 

  • O’Donnell M, Studwell PS (1990) Total reconstitution of DNA polymerase III holoenzyme reveals dual accessory protein clamps. J Biol Chem 265:1179–1187

    PubMed  Google Scholar 

  • O’Donnell M, Onrust R, Dean FB, Chen M, Hurwitz J (1993) Homology in accessory proteins of replicative polymerases — E. coli to humans. Nucleic Acids Res 21:1–3

    Article  PubMed  Google Scholar 

  • Onrust R (1993) The structure and function of the accessory proteins of the E. coli DNA polymerase III holoenzyme. PhD Thesis, Cornell University Medical Center, New York

    Google Scholar 

  • Onrust R, O’Donnell M (1993) DNA polymerase III accessory proteins. II. Characterization of δ and δ′. J Biol Chem 268:11766–11772

    PubMed  CAS  Google Scholar 

  • Onrust R, Stukenberg PT, O’Donnell M (1991) Analysis of the ATPase subassembly which initiates processive DNA synthesis by DNA polymerase III holoenzyme. J Biol Chem 266:21681–21686

    PubMed  CAS  Google Scholar 

  • O’Reilly DR, Crawford AM, Miller LK (1989) Viral proliferating cell nuclear antigen. Nature 337:606

    Article  PubMed  Google Scholar 

  • Prelich G, Tan C-K, Kostura M, Mathews MB, So AG, Downey KM, Stillman B (1987) Functional identity of proliferating cell nuclear antigen and a DNA polymerase auxiliary protein. Nature 326:517–520

    Article  PubMed  CAS  Google Scholar 

  • Roth AC, Nossal NG, Englund PT (1982) Rapid hydrolysis of deoxynucleoside triphosphates accompanies DNA synthesis by T4 DNA polymerase and T4 accessory protein 44/62 and 45. J Biol Chem 257:1267–1273

    PubMed  CAS  Google Scholar 

  • Sancar A, Hearst JE (1993) Molecular matchmakers. Science 259:1415–1420

    Article  PubMed  CAS  Google Scholar 

  • Scheuermann RH, Echols H (1985) A separate editing exonuclease for DNA replication: the ε subunit of Escherichia coli DNA polymerase III holoenzyme. Proc Natl Acad Sci USA 81:7747–7751

    Article  Google Scholar 

  • Sinha NK, Morris CF, Alberts BM (1980) Efficient in vitro replication of double-stranded DNA templates by a purified T4 bacteriophage replication system. J Biol Chem 225:4290–4303

    Google Scholar 

  • Studwell PS, Stukenberg PT, Onrust R, Skangalis M, O’Donnell M (1990) Replication of the lagging strand by DNA polymerase III holoenzyme. UCLA Symp Mol Cell Biol New Ser 127:153–164

    CAS  Google Scholar 

  • Studwell-Vaughan PS, O’Donnell M (1991) Constitution of the twin polymerase of DNA polymerase III holoenzyme. J Biol Chem 266:19833–19841

    PubMed  CAS  Google Scholar 

  • Studwell-Vaughan PS, O’Donnell M (1993) DNA polymerase III accessory proteins. V. θ encoded by holE. J Biol Chem 268:11785–11791

    PubMed  CAS  Google Scholar 

  • Stukenberg PT (1993) The dynamics of E. coli DNA polymerase III holoenzyme in an in vitro lagging strand model system. PhD Thesis, Cornell University Medical College, New York

    Google Scholar 

  • Stukenberg PT, Studwell-Vaughan PS, O’Donnell M (1991) Mechanism of the sliding β-clamp of DNA polymerase III holoenzyme. J Biol Chem 266:11328–11334

    PubMed  CAS  Google Scholar 

  • Tsuchihashi Z, Kornberg A (1989) ATP interactions of the τ and γ subunits of DNA polymerase III holoenzyme of Escherichia coli. J Biol Chem 264:17790–17795

    PubMed  CAS  Google Scholar 

  • Tsuchihashi Z, Kornberg A (1990) Translational frameshifting generates the γ subunit of DNA polymerase III holoenzyme. Proc Natl Acad Sci USA 87:2516–2520

    Article  PubMed  CAS  Google Scholar 

  • Tsurimoto T, Stillman B (1990) Functions of replication factor C and proliferating cell nuclear antigen: functional similarity of DNA polymerase accessory proteins from human cells and bacteriophage T4. Proc Natl Acad Sci USA 87:1023–1027

    Article  PubMed  CAS  Google Scholar 

  • Wickner S (1976) Mechanism of DNA elongation catalyzed by Escherichia coli DNA polymerase III, dnaZ protein, and DNA elongation factors I and III. Proc Natl Acad Sci USA 73:3511–3515

    Article  PubMed  CAS  Google Scholar 

  • Wickner S, Hurwitz J (1974) Conversion of ΦX174 viral DNA to double-stranded form by purified Escherichia coli proteins. Proc Natl Acad Sci USA 71:4120–4124

    Article  PubMed  CAS  Google Scholar 

  • Wu YH, Franden MA, Hawker JR, McHenry CS (1984) Monoclonal antibodies specific for the a subunit of the Escherichia coli DNA polymerase III holoenzyme. J Biol Chem 259:12117–12122

    PubMed  CAS  Google Scholar 

  • Xiao H, Crombie R, Dong Z, Onrust R, O’Donnell M (1993a) DNA polymerase III accessory proteins. III. holC and holD encoding χ and ψ. J Biol Chem 268:11773–11778

    PubMed  CAS  Google Scholar 

  • Xiao H, Dong Z, O’Donnell M (1993b) DNA polymerase III accessory proteins. IV. Characterization of χ and ψ. J Biol Chem 268:11779–11784

    PubMed  CAS  Google Scholar 

  • Xiong Y, Zhang H, Beach D (1993) D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71:505–514

    Article  Google Scholar 

  • Yoder BL, Burgers PMJ (1991) Saccharomyces cerevisiae replication factor C. I. Purification and characterization of its ATPase activity. J Biol Chem 266:22689–22697

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

O’donnell, M., Kuriyan, J., Kong, XP., Stukenberg, P.T., Onrust, R., Yao, N. (1994). The β Sliding Clamp of E. coli DNA Polymerase III Holoenzyme Balances Opposing Functions. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78666-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78666-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78668-6

  • Online ISBN: 978-3-642-78666-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics