Skip to main content

Structure, Transcription, and Replication of Measles Virus

  • Chapter
Measles Virus

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 191))

Abstract

Measles virus, a member of the morbillivirus genus of the paramyxovirus family, is an enveloped virus containing a single-stranded, minus (−) sense 50S RNA genome (Baczko et al. 1983; Dunlap et al. 1983; Udem and Cook 1984). Negatively stained preparations of virus particles appear roughly spherical but pleomorphic by electron microscopy, with the diameters of the particles ranging from 300 um to 1000 um (Lund et al. 1984). The envelope of the virion consists of a lipid bilayer membrane; the integral viral membrane proteins hemagglutinin (H, 80 kDa) (Gerald et al. 1986) and the two subunits of the fusion protein (F1, 40 kDa and F2, 20 kDa) (Buckland et al. 1987; Richardson et al. 1986; Stallcup et al. 1979) can be released by trypsin treatment. The matrix protein (M, 37 kDa) (Greer et al. 1986) appears to lie on the inner surface of the membrane and can be released with detergent and high salt (Bellini et al. 1986; Stallcup et al. 1979). Virion RNA is packaged in a helical ribonucleoprotein particle or nucleocapsid (Nakai et al. 1969; Robbins et al. 1980; and Lund et al. 1984) by the nucleocapsid protein (N, 60 kDa) (Rozenblatt et al. 1985). Measles nucleocapsids can be purified from virus banded on CsCI gradients as ribonucleoprotein particles at a density of 1.32 g/cm3 (Stallcup et al. 1979; Robbins et al. 1980; Udem and Cook 1984). The association between RNA and N is very stable, being resistant to dissociation by high salt, and the encapsidated RNA is resistant to nuclease digestion (Andzhaparidze et al. 1987; Moyer et al. 1990). The virus-encoded RNA-dependent RNA polymerase consists of two subunits, the P (70 kDa) and L (~250 kDa) proteins, and is associated with the nucleocapsid in the virion (Bellini et al. 1985; Blumber et al. 1988; Seifried et al. 1978).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alkhatib G, Briedis DJ (1986) The predicted primary structure of the measles virus hemagglutinin. Virology 150: 479–490

    Article  PubMed  CAS  Google Scholar 

  • Alkhatib G, Massie B, Briedis DJ (1988) Expression of bicistronic measles virus P/C mRNA by using hybrid adenoviruses: levels of C protein synthesized in vivo are unaffected by the presence or absence of the upstream P initiator codon. J Viro1 62: 4059–4069

    PubMed  CAS  Google Scholar 

  • Andzhaparidze OG, Chaplygina NM, Bogomolova NN, Lotte VD, Koptyaeva JB, Boriskin YS (1987) Non-infectious morphologically altered nucleocapsids of measles virus from persistently infected cells. Arch Virol 95: 17–28

    Article  PubMed  CAS  Google Scholar 

  • Baczko K, Billeter M, ter Meulen V (1983) Purification and molecular weight determination of measles virus genomic RNA. J Gen Virol 64: 1409–1413

    Article  PubMed  CAS  Google Scholar 

  • Banerjee AK (1987) Transcription and replication of rhabdoviruses. Microbiol Rev 51: 66–87

    PubMed  CAS  Google Scholar 

  • Banerjee AK, Barik S (1992) Gene expression of vesicular stomatitis virus genome RNA. Virology 188: 417–428

    Article  PubMed  CAS  Google Scholar 

  • Barrett T, Underwood B (1985) Comparison of meassenger RNAs induced in cells infected with each member of the morbillivirus group. Virology 145: 195–199

    Article  PubMed  CAS  Google Scholar 

  • Bellini WJ, Englund G, Richardson CD, Rozenblatt S (1984) Positive identification of a measles virus cDNA clone encoding a region of the phosphoprotein. J Virol 50: 939–942

    PubMed  CAS  Google Scholar 

  • Bellini WJ, Englund G, Rozenblatt G, Amheiter H, Richardson CD (1985) Measles virus P gene codes for two proteins. J Virol 53: 908–919

    PubMed  CAS  Google Scholar 

  • Bellini WJ, Englund G, Richardson CD, Rozenblatt S, Lazzarini RA (1986) Matrix genes of measles virus and canine distemper virus: cloning, nucleotide sequence, and deduced amino acid sequences. J Virol 58: 408–416

    PubMed  CAS  Google Scholar 

  • Blumberg BM, Leppert M, Kolakofsky D (1981) Interaction of VSV leader RNA and nucleocapsid protein may control VSV genome replication. Cell 23: 837–845

    Article  PubMed  CAS  Google Scholar 

  • Blumberg BM, Crowley JC, Silverman JI, Menonna J, Cook SD, Dowling PC (1988) Measles virus L protein evidences elements of ancestral RNA polymerase. Virology 164: 487–497

    Article  PubMed  CAS  Google Scholar 

  • Blumberg BM, Chan J, Udem SA (1991) Function of paramyxovirus 3’ and 5’ end sequences in theory and practice. In: Kingsbury DW (ed) The paramyxoviruses. Plenum, New York, pp 235–247

    Google Scholar 

  • Bohn W, Rutter G, Hohenberg H, Mannweiler K, Nobis P (1986) Involvement of actin filaments in budding of measles virus: studies on cytoskeletons of infected cells. Virology 149: 91–106

    Article  PubMed  CAS  Google Scholar 

  • Buckland R, Gerald C, Baker R, Wild TF (1987) Fusion glycoprotein of measles virus: nucleotide sequence of the gene and comparison with other paramyxoviruses. J Gen Virol 68: 1695–1703

    Article  PubMed  CAS  Google Scholar 

  • Buckland R, Giraudon P, Wild F (1989) Expression of measles virus nucleoprotein in Escherichia coli: use of deletion mutants to locate the antigenic sites. J Gen Virol 70: 435–441

    Article  PubMed  CAS  Google Scholar 

  • Canter DM, Jackson RL, Perrault J (1993) Faithful and efficient in vitro reconstitution of vesicular stomatitis virus transcription using plasmid-encoded L and P proteins. Virology 194: 518–529

    Article  PubMed  CAS  Google Scholar 

  • Castaneda SJ, Wong TC (1989) Measles virus synthesizes both leaderless and leadercontaining polyadenylated RNAs in vivo. J Virol 63: 2977–2986

    PubMed  CAS  Google Scholar 

  • Castaneda SJ, Wong TC (1990) Leader sequence distinguishes between translatable and encapsidated measles virus RNAs. J Virol 64: 222–230

    PubMed  CAS  Google Scholar 

  • Cattaneo R, Rose JK (1993) Cell fusion by the envelope glycoproteins of persistent measles viruses which caused lethal human brain disease. J Virol 67: 1493–1502

    PubMed  CAS  Google Scholar 

  • Cattaneo R, Rebmann G, Schmid A, Baczko K, ter Meulen V, Billeter MA (1987a) Altered transcription of a defective measles virus genome derived from a diseased human brain. EMBO J 6: 681–688

    PubMed  CAS  Google Scholar 

  • Cattaneo R, Rebmann G, Baczko K, ter Meulen V, Billeter MA (1987b) Altered ratios of measles virus transcripts in diseased human brains. Virology 160: 523–526

    Article  PubMed  CAS  Google Scholar 

  • Cattaneo R, Kaelin K, Baczko K, Billeter MA (1989) Measles virus editing provides an additional cysteine-rich protein. Cell 56: 759–764

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay D, Banerjee AK (1988) NH2-terminal acidic region of the phosphoprotein of vesicular stomatitis virus can be functionally replaced by tubulin. Proc Natl Acad Sci USA. 85: 7977–7981

    Article  PubMed  CAS  Google Scholar 

  • Crowley J, Dowling PC, Menonna J, Schanzer B, Young E, Cook SD, Blumberg BM (1987) Molecular cloning of 99% of measles virus genome, positive identification of 5’ end clones, and mapping of the L gene region. Intervirology 28: 65–77

    Article  PubMed  CAS  Google Scholar 

  • Crowley JC, Dowling PC, Menonna J, Silverman JI, Schuback D, Cook SD, Blumberg BM (1988) Sequence variablity and function of measles virus 3’ and 5’ ends and intercistronic regions. Virology 164: 498–506

    Article  PubMed  CAS  Google Scholar 

  • Curran J, Boeck R, Kolakofsky D (1991) The Sendai virus P gene expresses both an essential protein and an inhibitor of RNA synthesis by shuffling modules via mRNA editing. EMBO. J 10: 3079–3085

    PubMed  CAS  Google Scholar 

  • Curran J, Marq J-B, Kolakofsky D (1992) The Sendai virus nonstructural C proteins specifically inhibit viral mRNA synthesis. Virology 189: 647–656

    Article  PubMed  CAS  Google Scholar 

  • Curran J, Homann H, Buchholz C, Rochat S, Neubert W, Kolakofsky D (1993) The hypervariable C-terminal tail of the Sendai paramyxovirus nucleocapsid protein is required for template function but not for RNA encapsidation. J Virol 67: 4358–4364

    PubMed  CAS  Google Scholar 

  • Deshpande KL, Portner A (1985) Monoclonal antibodies to the P protein of Sendai virus define its structure and role in transcription. Virology 140: 125–134

    Article  PubMed  CAS  Google Scholar 

  • Dörig RE, Marcil A, Chopra A, Richardson CD (1993) The human CD 46 molecule is a receptor for measles virus (Edmonston strain). Cell 75: 295–305

    Article  PubMed  Google Scholar 

  • Dowling PC, Blumberg BM, Menonna J, Adamus JE, Cook PJ, Crowley JC, Kolakofsky D, Cook SD (1986) Transcriptional map of the measles virus genome. J Gen Virol 67: 1987–1992

    Article  PubMed  CAS  Google Scholar 

  • Dunlap RC, Milstien JB, Lundquist ML (1983) Identification and characterization of measles virus 50S RNA. Intervirology 19: 169–175

    Article  PubMed  CAS  Google Scholar 

  • Emerson SU, Yu YH (1975) Both NS and L proteins are required for in vitro RNA synthesis by vesicular stomatitis virus. J Virol 15: 1348–1356

    PubMed  CAS  Google Scholar 

  • Galinski M (1991) Annotated nucleotide and protein sequneces for selected paramyxoviridae. In: Kingsbury DW (ed) The paramyxoviruses. Plenum, New York, pp 537–568

    Google Scholar 

  • Gerald C, Buckland R, Barker R, Freeman G, Wild TF (1986) Measles virus haemagglutinin gene: cloning, complete nucleotide sequence analysis and expression in Cos cells. J Gen Virol 67: 2695–2703

    Article  PubMed  CAS  Google Scholar 

  • Giraudon P, Jacquier MF, Wild TF (1988) Antigenic analysis of African measles virus field isolates: identification and localisation of one conserved and two variable epitope sites on the NP protein. Virus Res 18: 137–152

    Article  Google Scholar 

  • Gombart AF, Hirano A, Wong TC (1992) Expression and properties of the V protein in acute measles virus and subacute sclerosing panencephalitis virus strains. Virus Res 25: 63–78

    Article  PubMed  CAS  Google Scholar 

  • Gombart AF, Hirano A, Wong TC (1993) Conformational maturation of measles virus nucleocapsid protein. J Virol 67: 4133–4141

    PubMed  CAS  Google Scholar 

  • Greer PA, Hasel KW, Millward S (1986) Cloning and in vitro expression of the measles virus matrix gene. Biochem Cell Bioi 65: 1038–1043

    Article  Google Scholar 

  • Guiffre RA, Tovell DR, Kay CM, Tyrrell DLJ (1982) Evidence for an interaction between the membrane protein of a paramyxovirus and actin. J Virol 42: 963–968

    Google Scholar 

  • Hall WW, ter Meulen V (1977) Polyadenylic acid [poly (A)] sequences associated with measles virus intracellular ribonucleic acid (RNA) species. J Gen Virol 35: 497–510

    Article  Google Scholar 

  • Hamaguchi M, Yoshida T, Nishikawa K, Naruse H, Nagai Y (1983) Transcriptive complex of Newcastle disease virus I. Both L and P proteins are required to reconstitute an active complex. Virology 128: 105–117

    Article  PubMed  CAS  Google Scholar 

  • Hamaguchi M, Nishikawa K, Toyoda T, Yoshida T, Hanaichi T, Nagai Y (1985) Transcriptive complex of Newcastle disease virus II. Structural and functional assembly associated with the cytoskeletal framework. Virology 147: 295–308

    Article  PubMed  CAS  Google Scholar 

  • Hammond OC, Lesnaw JA (1987) Functional analysis of hypomethylation variants of the New Jersey serotype of vesicular stomatitis virus. Virology 160: 330–335

    Article  PubMed  CAS  Google Scholar 

  • Hasel KW, Day S, Millward S, Richardson CD, Bellini WJ, Greer PA (1987) Characterization of cloned measles virus mRNAs by in vitro transcription, translation and immuno-precipitation. Intervirology 28: 26–39

    Article  PubMed  CAS  Google Scholar 

  • Heggeness MH, Scheid A, Choppin PW (1981) The relationship of conformational changes in the Sendai virus nucleocapsid to proteolytic cleavage in the NP polypeptide. Virology 114: 555–562

    Article  PubMed  CAS  Google Scholar 

  • Hercyk N, Horikami SM, Moyer SA (1988) The vesicular stomatitis virus L protein possesses the mRNA methyltransferase activities. Virology 163: 222–225

    Article  PubMed  CAS  Google Scholar 

  • Hirano A, Wang AH, Gombart AF, Wong TC (1992) The matrix proteins of neurovirulent subacute sclerosing panencephalitis virus and its acute measles virus progenitor are functionally different. Proc Natl Acad Sci USA 89: 8745–8749

    Article  PubMed  CAS  Google Scholar 

  • Homann HE, Willenbrink W, Buchholz CJ, Neubert WJ (1991) Sendai virus protein-protein intractions studied by a protein-blotting protein-overlay technique: mapping of domains on NP protein required for binding to P protein. J Virol 65: 1304–1309

    PubMed  CAS  Google Scholar 

  • Horikami SM, Moyer SA (1991) Synthesis of leader RNA and editing of the P mRNA during transcription by purified measles virus. J Virol 65: 5342–5347

    PubMed  CAS  Google Scholar 

  • Horikami SM, Curran J, Kolakofsky D, Moyer SA (1992) Complexes of Sendai virus NP-P and P-L proteins are required for defective interfering particle genome replication in vitro. J Virol 66: 4901–4908

    PubMed  CAS  Google Scholar 

  • Hsu, C-H, Kingsbury DW (1982) Topography of phosphate residues in Sendai viral proteins. Virology 120: 225–234

    Article  PubMed  CAS  Google Scholar 

  • Huber M, Cattaneo R, Spielhofer P, Orvell C, Norrby E, Messerli M, Perriard J-C, Billeter MA (1991) Measles virus phosphoprotein retains the nucleocapsid protein in the cytoplasm. Virology 185: 299–308

    Article  PubMed  CAS  Google Scholar 

  • Hunt DM, Hutchinson KL (1993) Amino acid changes in the L polymerase proteins of vesicular stomatitis virus which confer aberrant polyadenylation and temprature-sensitive phenotypes. Virology 193: 786–793

    Article  PubMed  CAS  Google Scholar 

  • Kingsbury DW (ed) (1991) The paramyxoviruses. Plenum, New York

    Google Scholar 

  • Kolakofsky D, Vidal S, Curran J (1991) Paramyxovirus RNA synthesis and P gene expression. In: Kingsbury DW (ed) The paramyxoviruses. Plenum, New York, pp 215–233

    Google Scholar 

  • Leopardi R, Hukkanen V, Vaenconpää R, Salmi AA (1993) Cell proteins bind to sites within the 3’ noncoding region and the positive-strand leader sequence of measles virus RNA. J Virol 67: 785–790

    PubMed  CAS  Google Scholar 

  • Lund GA. Tyrrell DLJ, Bradley RD, Scraba DG (1984) The molecular length of measles virus RNA and the structural organization of measles nucleocapsids. J Gen Virol 65: 1535–1542

    Article  PubMed  CAS  Google Scholar 

  • Miyahara K, Kitada S, Yoshimoto M, Matsumura H, Kawano M, Komada H, Tsurudome M, Kusugawa S, Nishio M, Ito Y (1992) Molecular evolution of paramyxoviruses: nucleotide sequence analyses of the human parainfluenza type I virus NP and M protein genes and construction of phylogenetic trees for all the human paramyxoviruses. Arch Virol 124: 255–268

    Article  PubMed  CAS  Google Scholar 

  • Morrison T, Portner A (1991) Structure, function and intracellular processing of the glycoproteins of paramyxoviridae. In: Kingsbury DW (ed) The paramyxoviruses. Plenum, New York, pp 347–382

    Google Scholar 

  • Moyer SA, Horikami SM (1991) The role of viral and host cell proteins in paramyxovirus transcription and replication. In: Kingsbury DW (ed) The paramyxoviruses. Plenum, New York, pp 249–274

    Google Scholar 

  • Moyer SA, Baker SC, Lessard JL (1986) Tubulin: a factor necessary for the synthesis of both Sendai virus and vesicular stomatitis virus RNAs. Proc Natl Acad Sci USA 83: 5405–5409

    Article  PubMed  CAS  Google Scholar 

  • Moyer SA, Baker SC, Horikami SM (1990) Host cell proteins required for measles virus reproduction. J Gen Virol 71: 775–783

    Article  PubMed  CAS  Google Scholar 

  • Nakai T, Shand FL, Howatson AF (1969) Development of measles virus in vitro. Virology 38: 50–67

    Article  PubMed  CAS  Google Scholar 

  • Naniche D, Varior–Krishnan G, Cervoni F, Wild TF, Ross B, Rabourdin-Combe C, Gerlier D (1993) Human membrane cofactor protein (CD 46) acts as a cellular receptor for measles virus. J Virol 67: 6025–6032

    PubMed  CAS  Google Scholar 

  • Park KH, Krystal M (1992) In vivo model for pseudo-templated transcription in Sendai virus. J Virol 66: 7033–7039

    PubMed  CAS  Google Scholar 

  • Pattnaik AK, Wertz GW (1990) Replication and amplification of defective interfering particle RNAs of vesicular stomatitis virus in cells expressing viral proteins from vectors containing cloned cDNAs. J Viro164: 2948–2957

    PubMed  CAS  Google Scholar 

  • Peeples ME (1991) Paramyxovirus M proteins: Pulling it all together and taking it on the road. In: Kingsbury DW (ed) The paramyxoviruses. Plenum, New York, pp 427–456

    Google Scholar 

  • Poch O, Blumberg BM, Bougueleret L, Tordo N (1990) Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains. J Gen Virol 71: 1153–1162

    Article  PubMed  CAS  Google Scholar 

  • Pringle CR (1987) Rhabdovirus genetics. In: Wagner RR (ed) The rhabdoviruses. Plenum, New York, pp 167–243

    Google Scholar 

  • Ray J, Fujinami RS (1987) Characterization of in vitro transcription and transcriptional products of measles virus. J Virol 61: 3381–3387

    PubMed  CAS  Google Scholar 

  • Ray J, Whitton JL, Fujinami RS (1991a) Rapid accumulation of measles leader RNA in the nucleus of infected HeLa cells and human lymphoid cells. J Viro165: 7041–7045

    PubMed  CAS  Google Scholar 

  • Ray R, Roux L, Compans RW (1991 b) Intracellular targeting and assembly of paramyxovirus proteins. In: Kingsbury DW (ed) The paramyxoviruses. Plenum, New York, pp 457–480

    Google Scholar 

  • Richardson CD, Berkovich A, Rozenblatt S, Bellini WJ (1985) Use of antibodies directed against synthetic peptides for identifying cDNA clones, establishing reading frames and deducing the gene order of measles virus. J Virol 54: 186–193

    PubMed  CAS  Google Scholar 

  • Richardson C, Hall D, Greer P, Hasel K, Berkovich A. Englund G, Bellini W, Rima B, Lazzarini R (1986) The nucleotide sequence of the mRNA encoding the fusion protein of measles virus (Edmonston strain): a comparison of fusion proteins from several different parmyxoviruses. Virology 155: 508–523

    Article  PubMed  CAS  Google Scholar 

  • Rima BK, Baczko K, Clarke DK, Curran MD, Marten SJ, Billeter MA, ter Meulen V (1986) Characterization of clones for the sixth (L) gene and a transcriptional map for morbilliviruses. J Gen Virol 67: 1971–1978

    Article  PubMed  CAS  Google Scholar 

  • Robbins SJ, Bussell RH, Rapp F (1980) Isolation and partial characterization of two forms of cytoplasmic nucleocapsids from measles virus-infected cells. J Gen Virol 47: 301–310

    Article  PubMed  CAS  Google Scholar 

  • Rozenblatt S, Eizenberg O, Ben-Levy R, Lavie V, Bellini WJ (1985) Sequence homology with the morbilliviruses. J Virol 53: 684–690

    PubMed  CAS  Google Scholar 

  • Ryan KW, Portner A (1990) Separate domains of Sendai virus P protein are required for binding to viral nucleocapsids. Virology 174: 515–521

    Article  PubMed  CAS  Google Scholar 

  • Ryan KW, Morgan EM, Portner A (1991) Two noncontiguous regions of Sendai virus P protein combine to form a single nucleocapsid binding domain. Virology 180: 126–134

    Article  PubMed  CAS  Google Scholar 

  • Schneider-Schaulies S, Liebert UG, Baczko K, Cattaneo R, Billeter M, ter Meulen V (1989) Restriction of measles virus gene expression in acute and subacute encephalitis of Lewis rats. Virology 171: 525–534

    Article  PubMed  CAS  Google Scholar 

  • Seifried AS, Albrecht P, Milstien JB (1978) Characterization of an RNA-dependent RNA polymerase activity associated with measles virus. J Virol 25: 781–787

    PubMed  CAS  Google Scholar 

  • Sleat DE, Banerjee AK (1993) Transcriptional activity and mutational analysis of recombinant vesicular stomatitis virus RNA polymerase. J Virol 67: 1334–1339

    PubMed  CAS  Google Scholar 

  • Smallwood S, Ryan KW, Mayer SA (1994) Deletion analyses defines a carboxyl, proximal region of sendai virus P protein that binds to the polymerase L protein. Virology 202: 154–163

    Article  PubMed  CAS  Google Scholar 

  • Spehner D, Kirn A, Drillien R (1991) Assembly of nucleocapsidlike structures in animal cells infected with a vaccinia virus recombinant encoding the measles virus nucleoprotein. J Virol 65: 6296–6300

    PubMed  CAS  Google Scholar 

  • Stallcup KC, Wechsler SL, Fields BN (1979) Purification of measles virus and characterization of subviral components. J Virol 30: 166–176

    PubMed  CAS  Google Scholar 

  • Stallcup KC, Raine CS, Fields BN (1983) Cytochalasin B inhibits the maturation of measles virus. Virology 124: 59–74

    Article  PubMed  CAS  Google Scholar 

  • Thomas SM, Lamb RA, Paterson RG (1988) Two mRNAs that differ by two nontemplated nucleotides encode the amino coterminal proteins P and V of the paramyxovirus SV5. Cell 54: 891–902

    Article  PubMed  CAS  Google Scholar 

  • Tyrrell DLJ, Norrby E (1978) Structural polypeptides of measles virus. J Gen Virol 39: 219–229

    Article  PubMed  CAS  Google Scholar 

  • Udem SA, Cook KA (1984) Isolation and characterization of measles virus intracellular nucleocapsid RNA. J. Virol 49: 57–65

    PubMed  CAS  Google Scholar 

  • Vidal S, Curran J, Kolakofsky D (1990a) A stuttering model for paramyxovirus P mRNA editing. EMBO J 9: 2017–2022

    PubMed  CAS  Google Scholar 

  • Vidal S, Curran J, Kolakofsky D (1990b) Editing of the Sendai virus P/C mRNA by G insertion occcurs during mRNA synthesis via a virus encoded activity. J Virol 64: 239–246

    PubMed  CAS  Google Scholar 

  • Wardrop EA, Briedis DJ (1991) Characterization of V protein in measles virus-infected cells. J Virol 65: 3421–3428

    PubMed  CAS  Google Scholar 

  • Wild TF, Malvoisin E, Buckland R (1991) Measles virus: both the haemagglutinin and the fusion glycoprotein are required for fusion. J Gen Virol 72: 439–442

    Article  PubMed  CAS  Google Scholar 

  • Wong TC, Hirano A (1987) Structure and function of bicistronic RNA encoding the phosphoprotein and matrix protein of measles virus. J Virol 61: 584–589

    PubMed  CAS  Google Scholar 

  • Yoshikawa Y, Mizumoto K, Yamanouchi K (1986) Characterization of messenger RNAs of measles virus. J Gen Virol 67: 2807–2812

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Horikami, S.M., Moyer, S.A. (1995). Structure, Transcription, and Replication of Measles Virus. In: ter Meulen, V., Billeter, M.A. (eds) Measles Virus. Current Topics in Microbiology and Immunology, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78621-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78621-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78623-5

  • Online ISBN: 978-3-642-78621-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics