Skip to main content

Heavy Metal Cytotoxicity in Marine Organisms: Effects on Ca2+ Homeostasis and Possible Alteration of Signal Transduction Pathways

  • Chapter
Book cover Advances in Comparative and Environmental Physiology

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 20))

Summary

The data reported show that heavy metals, such as Hg2+, Cu2+, Cd2+, and Zn2+, are able to affect the mechanisms of Ca2+ homeostasis. It has been demonstrated that heavy metals, probably interacting with the sulphydrylic groups of the membrane proteins involved in the structure of the Ca2+ channels, can enhance the flux of Ca cations through the plasma membrane, the membrane of calciosomes, and mitochondria.

Moreover, the high affinity of heavy metals for SH residues could explain the high sensitivity of Ca2+ ATPases to these metals. In fact, Ca2+ translocases contain SH groups critical for the enzyme activity.

In the case of Cu2+ this cation, probably through the production of oxygen radicals, stimulates the process of lipid peroxidation of cell membranes, possibly contributing to the alteration of structural and enzymatic proteins involved in Ca2+ homeostasis through the oxidation of the sulphydrylic residues. In addition, heavy metals are also able to inhibit the Na+ /K+ ATPase, a well-known SH-containing enzyme present in the plasma membrane. This is of particular interest considering that Na+ /K+ translocase regulates a Na+/Ca2+ exchanger, whose function in Ca2+ homeostasis has been demonstrated in the plasma membrane of many different cells.

The role of GSH and metallothioneins as important components of the cell mechanisms to reduce the cytotoxic effects of heavy metals has here also been described.

Data are also presented concerning the effects of heavy metals on the mechanism of signal transduction. It seems possible that the cations affecting Ca2+ homeostasis could render the cell no more sensitive to Ca-mediated hormones and external stimuli. In addition, heavy metals could exert a direct effect on different aspects of signal transduction pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramson JJ, Trimm JL, Weden L, Salama G (1983) Heavy metals induce rapid calcium release from sarcoplasmic reticulum vesicles isolated from skeletal muscle. Proc Natl Acad Sci USA 80: 1526–1530

    Article  PubMed  CAS  Google Scholar 

  • Accomando R, Viarengo A, Orunesu M (1990) In vivo and in vitro effects of heavy metals on DNA polymerase activities in the digestive gland of Mytilus galloprovincialis Lam Comp Biochem Physiol 95C: 271–274

    Article  Google Scholar 

  • Aikawa JK (1976) Biochemistry and physiology of magnesium. In: Ananda S, Prasad M (eds) Trace elements in human health and disease. vol II. Essential untoxic elements. Academic Press, New York, pp 47–77

    Google Scholar 

  • Aloj Totaro E, Pisanti FA, Glees P, Continillo A (1986) The effect of copper pollution on mitochondrial degeneration. Mar Environ Res 18: 245–253

    Article  Google Scholar 

  • Arhem P (1980) Effects of some heavy metal ions on the ionic currents of myelinated fibres from Xenopus laevis. J Physiol 306: 219–231

    PubMed  CAS  Google Scholar 

  • Ballatori N, Clarkson TW (1983) Biliary transport of glutathione and methylmercury. Am J Physiol 244: G435 - G441

    PubMed  CAS  Google Scholar 

  • Barrit GJ (1982) Calcium movement across the cell membranes. In: Anghileri LJ, Tuffet-Anghileri AM (eds) The role of calcium in biological systems. CRC Press, Boca Raton, pp 17–30

    Google Scholar 

  • Behra R, Gall R (1991) Calcium/calmodulin-dependent phosphorylation and the effect of cadmium in cultured fish cells. Comp Biochem Physiol 100C: 191–195

    Article  CAS  Google Scholar 

  • Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signaling. Nature 341: 197–205

    Article  PubMed  CAS  Google Scholar 

  • Bormann J (1988) Electrophysiology of GABA A and GABA B receptor subtypes. Trends Neurosci 11: 112–116

    Article  PubMed  CAS  Google Scholar 

  • Bouquegneau JM (1977) ATPase activity in mercury intoxicated eels. Experientia 33: 941–942

    Article  PubMed  CAS  Google Scholar 

  • Bouquegneau JM, Gilles R (1979) Osmoregulation and pollution of the aquatic medium. In: Gilles R (ed) Metabolism and osmoregulation in animals. Wiley, New York, pp 563–580

    Google Scholar 

  • Bowler K, Duncan CJ (1970) The effect of copper on membrane enzymes. Biochim Biophys Acta 196: 116–121

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne R, Cheek TR (1991) Locating intracellular calcium stores. Trends Biochem Sci 16: 319–320

    Article  PubMed  CAS  Google Scholar 

  • Carafoli E (1987) Intracellular calcium homeostasis. Annu Rev Biochem 56: 395–433

    Article  PubMed  CAS  Google Scholar 

  • Carafoli E (1991) Calcium pump of the plasma membrane. Physiol Rev 71: 129–153

    PubMed  CAS  Google Scholar 

  • Cavallini D, De Marco C, Duprè S, Rotilio G (1969) The copper catalyzed oxidation of cysteine to cystine. Arch Biochem Biophys 130: 354–361

    Article  PubMed  CAS  Google Scholar 

  • Chandy JP, Patel B (1985) Do selenium and glutathione (GSH) detoxify mercury in marine invertebrates? Effects on lysosomal response in the tropical blood clam Anadara granosa. Dis Aquat Org 1: 39–47

    Article  CAS  Google Scholar 

  • Chavez E, Holguin JA (1988) Mitochondrial calcium release as induced by Hg2+. J Biol Chem 263: 3582–3587

    PubMed  CAS  Google Scholar 

  • Chavez E, Briones R, Michel B, Bravo C, Jay D (1985) Evidence for the involvement of dithiol groups in mitochondrial calcium transport. Studies with cadmium. Arch Biochem Biophys 242: 493–497

    Article  PubMed  CAS  Google Scholar 

  • Chiarandini DJ, Stefani E, Gerschenfeld HM (1967) Inhibition of membrane permeability to chloride by copper in molluscan neurons. Nature 213: 97–99

    Article  CAS  Google Scholar 

  • Chien KR, Abrams J, Ptau RG, Farber JL (1979) Ischemic myocardial cell injury. Prevention by chlorpromazine of an accelerated phospholipid degradation and associated membrane disfunction. Am J Pathol 94: 505–509

    Google Scholar 

  • Coppellotti O (1989) Glutathione, cysteine and acid-soluble thiol levels in Euglena gracilis cells exposed to copper and cadmium. Comp Biochem Physiol 94C: 35–40

    Article  Google Scholar 

  • Cousins RJ (1985) Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruplasmin. Physiol Rev 65: 238–309

    PubMed  CAS  Google Scholar 

  • Dixon DR (1983) Sister chromatid exchange and mutagens in the aquatic environment. Mar Pollut Bull 14: 282–289

    Article  Google Scholar 

  • Drew CA, Spence I, Johnston GAR (1991) The effect of metal cations of the first transition series on GABA binding to GABA A and GABA B binding sites in rat brain. Neurochemistry 57: S147

    Article  Google Scholar 

  • Eichorn GL (ed) (1973) Inorganic Biochemistry, Elsevier, Amsterdam

    Google Scholar 

  • Elinder CG (1986) Iron. In: Friberg L, Nordberg GF, Vouk V (eds) Handbook on the toxicology of metals, 2nd edn. Elsevier, Amsterdam, pp 276–297

    Google Scholar 

  • Elinder CG, Friberg L (1986) Cobalt. In: Friberg L, Nordberg GF, Vouk V (eds) Handbook on the toxicology of metals, 2nd edn. Elsevier, Amsterdam, pp 211–227

    Google Scholar 

  • Evans GW (1973) Copper homeostasis in the mammalian system. Physiol Rev 53: 535–570

    PubMed  CAS  Google Scholar 

  • Evtushenko ZS, Belcheva NN, Lukyanova ON (1986) Cadmium accumulation in organs of the scallop Mizuhopecten yessonensis II. Subcellular distribution of metals and metal-binding proteins. Comp Biochem Physiol 83C: 377–383

    CAS  Google Scholar 

  • Farmanfarmaian A, Socci R, Iannacconne V (1981) Interaction of heavy metals with intestinal transport mechanisms in echinoderms. In: Lawrence JM (ed) Echinoderms. Proc Int Conf Tampa Bay. University of South Florida, Tampa, pp 339–386

    Google Scholar 

  • Fayi L, George SG (1985) Purification of very low molecular weight Cu-complexes from the European oyster. In: Vernberg FJ, Thurberg FP, Calabrese A, Vernberg WB (eds) Marine pollution and physiology: recent advances. University of South Carolina Press, Columbia, pp 145–156

    Google Scholar 

  • Fill M, Coronado R (1988) Ryanodine receptor channel of sarcoplasmic reticulum. Trends Neurosci 11: 453–457

    Article  PubMed  CAS  Google Scholar 

  • Fiskum G (ed) (1989) Cell calcium metabolism. Plenum Press, New York

    Google Scholar 

  • Flik G, Van de Winkel JGJ, Part P, Bonga SEW, Lock AC (1987) Calmodulin-mediated cadmium inhibition of phosphodiesterase activity, in vitro. Arch Toxicol 59: 353–359

    Article  PubMed  CAS  Google Scholar 

  • Freedman JH, Peisach J (1989) Intracellular copper transport in cultured hepatoma cells. Biochem Bhiophys Res Commun 164: 134–140

    Article  CAS  Google Scholar 

  • Freedman JH, Ciriolo MR, Peisach J (1989) The role of glutathione in copper metabolism and toxicity. J Biol Chem 264: 5598–5605

    PubMed  CAS  Google Scholar 

  • George SG (1972) Subcellular accumulation and detoxication of metals in aquatic animals. In: Vernberg WB, Calabrese A, Thurberg FP, Vernberg FJ (eds) Physiological mechanisms of marine pollutant toxicity. Academic Press, New York, pp 3–22

    Google Scholar 

  • Gould E, Greig RA, Rusanowski D, Marks BC (1985) Metal-exposed sea scallops, Plactopecten magellanicus (Gmelin): a comparison of the effects and uptake of cadmium and copper. In: Vernberg FJ, Thurberg FP, Calabrese A, Vernberg WB (eds) Marine pollution and physiology: recent advances. University of South Carolina Press, Columbia, pp 157–186

    Google Scholar 

  • Gregus Z, Varga F (1985) Role of glutathione and hepatic glutathione S-transferase in the biliary excretion of methyl mercury, cadmium and zinc: a study with enzyme inducers and glutathione depletors. Acta Pharmacol Toxicol 56: 398–403

    Article  CAS  Google Scholar 

  • Griffith OW, Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem 254: 7558–7560

    PubMed  CAS  Google Scholar 

  • Hille B (ed) (1984) Ionic channels of excitable membranes. Sinauer Associates, Sunderland, Mass

    Google Scholar 

  • Hinkle PM, Kinsella PA, Osterhoudt KC (1987) Cadmium uptake and toxicity via voltage-sensitive calcium channels. J Biol Chem 262: 16333–16337

    PubMed  CAS  Google Scholar 

  • Hofstetter W, Muhlebach T, Lotscher HR, Winterhalter KH, Richter C (1981) ATP prevents both hydroperoxide-induced hydrolysis of pyridine nucleotides and release of calcium in rat liver mitochondria. Eur J Biochem 117: 361–367

    PubMed  CAS  Google Scholar 

  • Houwen R, Dijkstra M, Kuipers F, Smit EP, Havinga R, Vonk RJ (1990) Two pathways for biliary copper excretion in the rat. The role of glutathione. Biochem Pharmacol 39: 1039–1044

    Article  PubMed  CAS  Google Scholar 

  • Jarvisalo JO, Kilpio J, Saris NE (1980) Toxicity of cadmium to renal mitochondria when administered in vivo and in vitro. Environ Res 22: 217–233

    Article  PubMed  CAS  Google Scholar 

  • Jewell SA, Bellomo G, Thor H, Orrenius S (1982) Bleb formation in hepatocytes during drug metabolism is caused by disturbances in thiol and calcium ion homeostasis. Science 217: 1257–1259

    Article  PubMed  CAS  Google Scholar 

  • Kardos J, Kovacs I, Simonyi M (1989) Copper ion inihibits GABA-mediated chloride uptake into membrane vesicles from rat cerebral cortex. J Neurochem 52: S95

    Google Scholar 

  • Katti SR, Sathyanesan AG (1986) Lead nitrate induced changes in the brain constituents of the freshwater fish Clarias batrachus (L.). Neurotoxicology 7: 47–51

    PubMed  CAS  Google Scholar 

  • Kiss T, Györi J, Osipenko ON, Maginyan SB (1991) Copper-induced non-selective permeability changes in intracellularly perfused snail neurons. J Appl Toxicol 11: 349–354

    Article  PubMed  CAS  Google Scholar 

  • Lehninger AL (1970) Biochemistry. Worth, New York

    Google Scholar 

  • Levesque PC, Atchison WD (1987) Interactions of mitochondria) inhibitors with methylmercury on spontaneus quantal release of acetylcholine. Toxicol Appl Pharmacol 87: 315–324

    Article  PubMed  CAS  Google Scholar 

  • Lotscher HR, Winterhalter KH, Carafoli E, Richter C (1980) Hydroperoxide-induced loss of pyridine nucleotides and release of calcium from rat liver mitochondria. J Biol Chem 255: 9325–9330

    PubMed  CAS  Google Scholar 

  • Maclnnes J, Thurberg F (1973) Effects of metals on the behaviour and oxygen consumption of the mud snail. Mar Pollut Bull 4: 185–197

    Article  Google Scholar 

  • Mazzei GJ, Girard PR, Kuo JF (1984) Environmental pollutant Cd2+ biphasically and differentially regulates myosin light chain kinase and phospholipid/Ca2+ dependent protein kinase. FEBS Lett 173: 124–128

    Article  PubMed  CAS  Google Scholar 

  • Meister A (1983) Selective modification of glutathione metabolism. Science 220: 471–477

    Article  Google Scholar 

  • Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263: 17205–17208

    PubMed  CAS  Google Scholar 

  • Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52: 711–760

    Article  CAS  Google Scholar 

  • Minami J, Penniston JT (1987) Ca2+ uptake by corpus-luteum plasma membranes. Biochem J 242: 889–894

    PubMed  CAS  Google Scholar 

  • Murachi T, Tanaka K, Hatanaka M, Murakami T (1981) Intracellular Ca’ -dependent protease (calpain) and its high molecular weight endogenous inhibitor (calpastatin). Adv Enzyme Regul 19: 407–413

    Article  CAS  Google Scholar 

  • Murakami K, Whiteley MK, Routtenberg A (1987) Regulation of protein kinase C activity by cooperative interaction of Zn2+ and Ca2+ J Biol Chem 262: 13902–13906

    PubMed  CAS  Google Scholar 

  • Murphy E, Coll K, Rich TL, Williamson JR (1980) Hormonal effects on calcium homeostasis in isolated hepatocytes. J Biol Chem 255: 6600–6608

    PubMed  CAS  Google Scholar 

  • Naganuma A, Anderson ME, Meister A (1990) Cellular glutathione as a determinant of sensitivity to mercuric chloride toxicity. Biochem Pharmacol 40: 693–697

    Article  PubMed  CAS  Google Scholar 

  • Nieminen AL, Gores GJ, Dawson TL, Herman B, Lemasters JJ (1990) Toxic injury from mercuric chloride in rat hepatocytes. J Biol Chem 265: 2399–2408

    PubMed  CAS  Google Scholar 

  • Nishizuka Y (1986) Studies and perspectives of protein kinase C. Science 233: 305–312

    Article  PubMed  CAS  Google Scholar 

  • Norseth T, Clarkson TW (1971) Intestinal transport of Hg-labeled methyl mercury chloride. Arch Environ Health 22: 568–577

    PubMed  CAS  Google Scholar 

  • Ochi T, Otsuka F, Takahashi K, Ohsawa M (1988) Glutathione and metallothioneins as cellular defence against cadmium toxicity in cultured Chinese hamster cells. Chem Biol Interact 65: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Panfili E, Sottocasa GL, Sandri G, Liut G (1980) The Ca2+ binding glycoprotein as the site of metabolic regulation of mitochondria) Ca“ movements. Eur J Biochem 105: 205–210

    Article  PubMed  CAS  Google Scholar 

  • Panfoli I, Morelli A, Viarengo A, Orunesu M (1993) Biochemical characterization of a phosphatidylinositol 4,5-bisphosphate-specific phosphalipase C activity in gills and digestive gland of the marine mussel Mytilus galloprovinciolis Lam. Comp Biochem Physiol 105B: 139–145

    Article  CAS  Google Scholar 

  • Papahadjopoulos D (1968) Surface properties of acidic phospholipids: interactions of mono-layers and hydrated liquid crystals with uni-and bi-valent metal ions. Biochim Biophys Acta 163: 240–254

    Article  PubMed  CAS  Google Scholar 

  • Pietrobon D, Di Virgilio F, Pozzan T (1990) Structural and functional aspects of calcium homeostasis in eukaryotic cells. Eur J Biochem 193: 599–622

    Article  PubMed  CAS  Google Scholar 

  • Pontremoli S, Melloni E (1986) Extralysosomal protein degradation. Annu Rev Biochem 55: 455–481

    Article  PubMed  CAS  Google Scholar 

  • Prabhu SD, Salama G (1990) The heavy metal ions Ag2+ and Hg2+ trigger calcium release from cardiac sarcoplasmic reticulum. Arch Biochem Biophys 277: 47–55

    Article  PubMed  CAS  Google Scholar 

  • Puri RN, Meister A (1983) Transport of glutathione, as y-glutamylcysteinylglycyl ester, into liver and kidney. Proc Natl Acad Sci USA 80: 5258–5260

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen H, Barret PQ (1984) Calcium messenger system: an integrated view. Physiol Rev 64: 938–984

    PubMed  CAS  Google Scholar 

  • Richter C, Frei B (1985) Ca2+ movements induced by hydroperoxides in mitochondria. In: Sies H (ed) Oxidative stress. Academic Press, London, pp 221–241

    Google Scholar 

  • Rizzuto R, Pitton G, Azzone GF (1987) Effect of Ca2+ peroxides, SH reagents, phosphate and aging on the permeability of mitochondria] membranes. Eur J Biochem 162: 239–249

    Article  PubMed  CAS  Google Scholar 

  • Roer RD (1980) Mechanisms of resorption and deposition of calcium in the carapace of the crab Carcinus maenas. J Exp Biol 88: 205–218

    CAS  Google Scholar 

  • Rooney TA, Sass EJ, Thomas AP (1989) Characterization of cytosolic calcium oscillations induced by phenylephrine and vasopressin in single Fura-2-loaded hepatocytes. J Biol Chem 264: 17131–17141

    PubMed  CAS  Google Scholar 

  • Rózsa KS, Salânki J (1990) Heavy metals regulate physiological and behavioral events by modulating ion channels in neuronal membranes of molluscs. Environ Monitor Assess 14: 363–375

    Article  Google Scholar 

  • Schanne FAX, Kane AB, Young EE, Farber JL (1979) Calcium dependence of toxic cell death: a final common pathway. Science 206: 700–702

    Article  PubMed  CAS  Google Scholar 

  • Scott D, Major C (1972) The effect of copper (II) on survival, respiration, and heart rate in the common blue mussel Mytilus edulis. Biol Bull 143: 679–684

    Article  Google Scholar 

  • Shepard K, Simkiss K (1978) The effects of heavy metal ions on Ca2+ ATPase extracted from fish gills. Comp Biochem Physiol 61B: 69–72

    Google Scholar 

  • Shier WT, DuBourdieu DT (1983) Stimulation of phospholipid hydrolysis and cell death by mercuric chloride: evidence for mercuric ion acting as a calcium mimetic agent. Biochem Biophys Res Commun 110: 758–763

    Article  PubMed  CAS  Google Scholar 

  • Shute JK, Smith ME (1985) Inhibition of phosphatidylinositol phosphodiesterase activity in skeletal muscle by metal ions and drugs which block neuromuscular transmission. Biochem Pharmacol 34: 2471–2475

    Article  PubMed  CAS  Google Scholar 

  • Simkiss (1983) Lipid solubility of heavy metals in saline solutions. J Mar Biol Assoc UK 63: 1–6

    Article  CAS  Google Scholar 

  • Simpson RB (1961) Association constants of methylmercury with sulphydryl and other bases. J Am Chem Soc 83: 4711–4717

    Article  CAS  Google Scholar 

  • Singhal RK, Anderson ME, Meister A (1987) Glutathione, a first line of defence against cadmium toxicity. FASEB J 1: 220–223

    PubMed  CAS  Google Scholar 

  • Smart TG, Constanti A (1982) A novel effect of Zn2+ on the lobster muscle GABA receptor. Proc R Soc Lond B Biol Sci 215: 327–341

    Article  PubMed  CAS  Google Scholar 

  • Smart TG, Constanti A (1989) The vertebrate neuronal GABA-A receptor complex is modulated by group IIB divalent cations. Br J Pharmacol 96: 328

    Google Scholar 

  • Smith JB, Dwyer SD, Smith L (1989) Cadmium evokes inositol polyphosphate formation and calcium mobilization. J Biol Chem 264: 7115–7118

    PubMed  CAS  Google Scholar 

  • Smith MW, Phelps PC, Trump BF (1991) Cytosolic Ca’ deregulation and blebbing after HgC12 injury to cultured rabbit proximal tubule cells as determined by digital imaging microscopy. Proc Natl Acad Sci USA 88: 4926–4930

    Article  PubMed  CAS  Google Scholar 

  • Southard J, Nitisewojo P, Green DE (1974) Mercurial toxicity and the perturbation of the mitochondria] control system. Fed Proc Fed Am Soc Exp Biol 33: 2147–2153

    CAS  Google Scholar 

  • Speizer LA, Watson MJ, Kanter JR, Brunton LL (1989) Inhibition of phorbol ester binding and protein kinase C activity by heavy metals. J Biol Chem 264: 5581–5585

    PubMed  CAS  Google Scholar 

  • Thomas DJ, Smith JC (1979) Partial characterization of a low-molecular-weight methylmercury complex in rat cerebrum. Toxicol Appl Pharmacol 47: 547–556

    Article  PubMed  CAS  Google Scholar 

  • Thomas P, Juedes MJ (1992) Influence of lead on the glutathione status of Atlantic croaker tissues. Aquat Toxicol 23: 11–30

    Article  CAS  Google Scholar 

  • Thomas P, Wofford HW (1984) Effects of metals and organic compounds on hepatic glutathione, cysteine, and acid-soluble thiol levels in mullet (Mugil cephalus L.). Toxicol Appl Pharmacol 76: 172–182

    Article  PubMed  CAS  Google Scholar 

  • Thorley-Lawson DA, Green NM (1977) The reactivity of thiol groups of the adenosine triphosphatase of sarcoplasmic reticulum and their location on tryptic fragments of the molecule. Biochem J 167: 739–748

    PubMed  CAS  Google Scholar 

  • Trimm JL, Salama G, Abramson JJ (1986) Sulfhydryl oxidation induces rapid calcium release from sarcoplasmic reticulum vesicles. J Biol Chem 261: 16092–16098

    PubMed  CAS  Google Scholar 

  • Unep (1989) State of Mediterranean marine environment. MAP Tech Rep Ser 28. UNEP, Athens

    Google Scholar 

  • Verbost PM, Senden MHMN, Van Os CH (1987) Nanomolar concentrations of Cd2+ inhibit Ca2+ transport systems in plasma membranes and intracellular Ca2+ stores in intestinal epithelium. Biochim Biophys Acta 902: 247–252

    Article  PubMed  CAS  Google Scholar 

  • Verbost PM, Flik G, Lock RAC, Bonga SEW (1988) Cadmium inhibits plasma membrane calcium transport. J Membr Biol 102: 97–104

    Article  PubMed  CAS  Google Scholar 

  • Verbost PM, Flik G, Pang PKT, Lock RAC, Bonga SEW (1989a) Cadmium inhibition of the erythrocyte Ca2+ pump. J Biol Chem 264: 5613–5615

    PubMed  Google Scholar 

  • Verbost PM, Van Rooij J, Flick G, Lock RAC, Bonga SEW (1989b) The movement of cadmium through freshwater trout branchial epithelium and its interference with calcium transport. J Exp Biol 145: 185–197

    CAS  Google Scholar 

  • Viarengo A (1989) Heavy metals in marine invertebrates: mechanisms of regulation and toxicity at the cellular level. Aquat Sci 1: 295–317

    CAS  Google Scholar 

  • Viarengo A, Nicotera P (1991) Possible role of Ca2+ in heavy metal cytotoxicity. Comp Biochem Physiol 100C: 81–84

    CAS  Google Scholar 

  • Viarengo A, Pertica M, Mancinelli G, Capelli R, Orunesu M (1980) Effects of copper on the uptake of aminoacids, on protein synthesis and on ATP content in different tissues of Mytilus galloprovincialis Lam Mar Environ Res 4: 145–152

    Article  CAS  Google Scholar 

  • Viarengo A, Zanicchi G, Moore MN, Orunesu M (1981) Accumulation and detoxification of copper by the mussel Mytilus galloprovincialis Lam.: a study of subcellular distribution in the digestive gland cells. Aquat Toxicol 1: 147–157

    Article  CAS  Google Scholar 

  • Viarengo A, Pertica M, Mancinelli G, Palmero S, Orunesu M (1982) Effects of Cu2+ on nuclear RNA polymerase activities in mussel digestive gland. Mar Biol Lett 3: 345–352

    CAS  Google Scholar 

  • Viarengo A, Secondini A, Scoppa P, Moore MN, Orunesu M (1985) Effetti del Cu2+ e del Cd2+ sull’attività mitocondriale e sulla carica energetica adenilica delle cellule della ghiandola digestiva di mitili. Atti Riunione Congiunta SIB, SIF, SINU, Pisa, Settembre

    Google Scholar 

  • Viarengo A, Moore MN, Mancinelli G, Mazzucotelli A, Pipe RK, Farrar SV (1987) Metallothioneins and lysosomes in metal toxicity and homeostasis in marine mussels: the effect of cadmium in the presence and absence of phenanthrene. Mar Biol 94: 251–257

    Article  CAS  Google Scholar 

  • Viarengo A, Arena N, Pertica M, Canesi L, Martino G, Gaspa L, Orunesu M (1989) Effect of copper on microtubule structure in the gill cells of metal exposed mussels. Mar Environ Res 28: 453

    Article  Google Scholar 

  • Viarengo A, Canesi L, Pertica M, Poli G, Moore MN, Orunesu M (1990) Heavy metal effects on lipid peroxidation in the tissues of Mytilus galloprovincialis ( Lam. ). Comp Biochem Physiol 97C: 37–42

    CAS  Google Scholar 

  • Viarengo A, Pertica M, Mancinelli G, Orunesu M (1991) Heavy metal effects on the Ca2+ ATPase activity present in the gill cell plasma membrane of mussels (Mytilus galloprovincialis Lam.). Atti Riunione Congiunta SIBS, SIF, SINU, Sorrento, Settembre

    Google Scholar 

  • Viarengo A, Pertica M, Mancinelli G, Orunesu M (1992) Effects of Cu2+ on the Ca2+ ATPase activity present in the plasma membrane of metal exposed mussels. Atti Riunione Congiunta SIBS, SIF, SINU, Roma, Settembre

    Google Scholar 

  • Viarengo A, Canesi L, Moore MN, Orunesu M (1993) Effects of Cu2+ and Hg2+ on the cytosolic Ca2+ level in molluscan blood cells evaluated by confocal microscopy. Mar Biol (in press)

    Google Scholar 

  • Vouk V (1986) General chemistry of metals. In: Friberg L, Nordberg GF, Vouk VB (eds) Handbook on the toxicology of metals, vol I. Elsevier, Amsterdam, pp 14–35

    Google Scholar 

  • Walter P, Allemand D, de Renzis G, Payan P (1989) Mediating effect of calcium in HgCl2 cytotoxicity in sea urching egg: role of mitochondria in Ca2-mediated cell death. Biochim Biophys Acta 54: 1–8

    Google Scholar 

  • Walton DW, Airey JA, Sutko JL, Beck CF, Mignery GA, Sudhof TC, Deerinck TJ, Ellisman MH (1991) Ryanodine and inositol trisphosphate receptors coexist in avian cerebellar Purkinje neurons. J Cell Biol 113: 1145–1157

    Article  PubMed  CAS  Google Scholar 

  • Webb M (1979) Interactions of cadmium with cellular components. In: Webb M (ed) The chemistry, biochemistry and biology of cadmium. Elsevier, North-Holland Biomedical Press, Amsterdam, pp 285–340

    Google Scholar 

  • Weinreich D, Wonderlin WF (1987) Copper activates an unique inward current in molluscan neurons. J Physiol 394: 429–443

    PubMed  CAS  Google Scholar 

  • Wyllie AH, Morris RG, Smith AL, Dunlop D (1984) Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J Pathol 14: 67–71

    Article  Google Scholar 

  • Yamada S, Ikemoto N (1978) Distinction of thiols involved in the specific reaction steps of the Ca2+ ATPase of the sarcoplasmic reticulum. J Biol Chem 253: 6801–6807

    PubMed  CAS  Google Scholar 

  • Zaba BN, Harris EJ (1976) Uptake and effects of copper in rat liver mitochondria. Biochem J 160: 707–714

    PubMed  CAS  Google Scholar 

  • Zaba BN, Harris EJ (1978) Accumulation and effects of trace metal ions in fish liver mitochondria. Comp Biochem Physiol 61C: 89–94

    Article  Google Scholar 

  • Zaroogian GE, Gentile JH, Heltshe JF, Johnson M, Ivanovici AM (1982) Application of adenine nucleotide measurements for the evaluation of stress in Mytilus edulis and Crassostrea virginica. Comp Biochem Physiol 71B: 649–655

    Google Scholar 

  • Zhang GH, Yamaguchi M, Kimura S, Higham S, Kraus-Friedmann N (1990) Effects of heavy metal on rat liver microsomal Ca2+ ATPase and Ca2+ sequestering. J Biol Chem 265: 2184–2189

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Viarengo, A. (1994). Heavy Metal Cytotoxicity in Marine Organisms: Effects on Ca2+ Homeostasis and Possible Alteration of Signal Transduction Pathways. In: Advances in Comparative and Environmental Physiology. Advances in Comparative and Environmental Physiology, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78598-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78598-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78600-6

  • Online ISBN: 978-3-642-78598-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics