Skip to main content

Factors Influencing Motile Activities of Fish Chromatophores

  • Chapter
Advances in Comparative and Environmental Physiology

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 20))

Abstract

The beautiful coloration, conspicuous patterns and their spectacular changes displayed by many poikilotherms have always attracted attention. The animals themselves utilize these features as “aposematic” or “advertisement” coloration. Inconspicuous colors and patterns are conversely exploited as “cryptic” or “concealing” coloration. Many people simply appreciate these phenomena, while zoologists and physiologists can also enjoy studying them. For the animals themselves, however, such colors, patterns and reactions represent strategies of the utmost importance for the survival of individuals or of species. For example, “protective” coloration, which constitutes part of the cryptic coloration mentioned above, is useful for avoiding attacks by predators, while conspicuous displays function to frighten predators. On many occasions, delicate and subtle changes in hues and patterns are used for communication with conspecifics (cf. Cott 1940; Bagnara and Hadley 1973; Needham 1974; Fujii 1993a). These phenomena are especially highly evolved in fish among the vertebrates, and in particular among members of the class Osteichthyes. The chromatic systems of Osteichthyes have developed extraordinarily sophisticated properties during the evolution of this class of vertebrates over the course of more than 400 million years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz J, Chavin W (1974) In vitro effects of prostaglandins upon melanosome dispersion in the skin of black goldfish Carassius auratus L. Prostaglandins 4: 805–818

    Google Scholar 

  • Abrao MS, Castrucci AML, Hadley ME, Hruby VJ (1991) Protein-kinase C mediates MCH signal transduction in teleost, Synbranchus marmoratus melanocytes. Pigm Cell Res 4: 66–70

    CAS  Google Scholar 

  • Akiyama T, Matsumoto J (1983) The blockade of pigment displacement in swordtail erythrophores by microinjection of antiactin antibody. J. Exp Zool 227: 405–411

    CAS  Google Scholar 

  • Andersson RGG, Karlsson JO, Grundström N (1984) Adrenergic nerves and alpha2-adrenoceptor system regulating melanosome aggregation within fish melanophores. Acta Physiol Scand 121: 173–179

    PubMed  CAS  Google Scholar 

  • Ando S (1962) Responses of embryonic melanophores of the wild medaka (Oryzias latipes) to various stimuli. Embryologia 7: 169–178

    Google Scholar 

  • Baerends G, Baerends-van Roon JM (1950) An introduction to the study of the ethology of cichlid fishes. Brill. Leiden

    Google Scholar 

  • Bagnara JT, Hadley ME (1973) Chromatophores and color change. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Baker BI (1991) Melanin-concentrating hormone: a general vertebrate neuropeptide. Int Rev Cytol 126: 1–47

    PubMed  CAS  Google Scholar 

  • Baker BI, Ball.IN (1975) Evidence for a dual pituitary control of teleost melanophores. Gen Comp Endocrinol 25: 147–152

    PubMed  CAS  Google Scholar 

  • Baker BI, Wilson JF, Bowley TJ (1984) Changes in pituitary and plasma level of MSH in teleosts during physiological colour change. Gen Comp Endocrinol 55: 142–149

    PubMed  CAS  Google Scholar 

  • Bitensky MW, Miki N, Keims JJ, Keims M, Baraban JM, Freeman J, Wheeler MA, Lacy J, Marcus FR (1975) Activation of photoreceptor disk membrane phosphodiesterase by light and ATP. In: Drummond GI, Greengard P, Robison GA (eds) Advances in cyclic nucleotide research, vol 5. Raven Press, New York, pp 213–240

    Google Scholar 

  • Carter DA, Baker BI (1980) The relaionship between opiate concentration and cellular activity in part distalis and neurointermediate lobe of the eel (Anguilla anguilla) pituitary. Gen Comp Endocrinol 41: 225–232

    PubMed  CAS  Google Scholar 

  • Chavin W (ed) (1972) Responses of fish to environmental changes. Thomas, Springfield

    Google Scholar 

  • Clark TG, Rosenbaum JL (1982) Pigment particle translocation in detergent-permeabilized melanophores of Fundulus heteroclitus. Proc Natl Acad Sci USA 79: 4655–4659

    PubMed  CAS  Google Scholar 

  • Colley AM, Hunt EL (1974) Cyclic AMP and adrenergic receptors in Gambusia affinis melanophore response in vitro. Gen Comp Endocrinol 23: 154–163

    PubMed  CAS  Google Scholar 

  • Cott HB (1940) Adaptive coloration in animals. Oxford University Press, New York

    Google Scholar 

  • Duspiva F (1931) Beiträge zur Physiologie der Melanophoren von Fischembryonen. Sitzungsber Akad Wiss Wien Math-Naturwiss K 140: 553–596

    Google Scholar 

  • Egami N, Etoh H, Tachi C, Aoki K, Arai R (1962) Role of the pituitary gland in melanization in the skin of the goldfish, Carassius auratus, induced by X-ray irradiation. Proc Jpn Acad 38: 345–347

    Google Scholar 

  • Enami M (1955) Melanophore-concentrating hormone (MCH) of possible hypothalamic origin in the catfish, Parasilurus asotus. Science 121: 36–37

    PubMed  CAS  Google Scholar 

  • Etoh H (1963) The effects of ‘y-irradiation on the physiological response of the nervemelanophore system in Carassius carassius. Zool Mag 72: 277–282 (in Japanese)

    Google Scholar 

  • Etoh H, Egami N (1963) Responses to Na+, K+, atropine and adrenaline of melanophores induced by X-irradiation in the fin of the goldfish, Carassius auratus. Annot Zool Jpn 36: 133–139

    Google Scholar 

  • Foster KW (1933) Color changes in Fundulus with special references to the color change of the iridosomes. Proc Natl Acad Sci USA 19: 535–540

    PubMed  CAS  Google Scholar 

  • Fox DL (1979) Biochromy. University California Press, Berkeley

    Google Scholar 

  • Fries EFB (1931) Color change in Fundulus, with special consideration of the xanthophores. J Exp Zool 60: 384–426

    Google Scholar 

  • Fries EFB (1958) Iridescent white reflecting chromatophores (antaugophores, iridoleucophore) in certain teleost fishes, particularly in Bathygobius. J Morphol 103: 203–242

    CAS  Google Scholar 

  • Fujii R (1959a) Mechanism of ionic action in the melanophore system of fish I. Melanophoreconcentrating action of potassium and some other ions. Annot Zool Jpn 32: 47–59

    Google Scholar 

  • Fujii R (1959b) Mechanism of ionic action in the melanophore system of fish II. Melanophoredispersing action of sodium ions. J Fac Sci Univ Tokyo Sect IV 8: 371–380

    Google Scholar 

  • Fujii R (1960) The seat of atropine action in the melanophore-dispersing system of fish. J Fac Sci Univ Tokyo Sect IV 8: 643–657

    Google Scholar 

  • Fujii R (1961) Demonstration of the adrenergic nature of transmission at the junction between melanophore-concentrating nerve and melanophore in bony fish. J Fac Sci Univ Tokyo Sect IV 9: 171–196

    Google Scholar 

  • Fujii R (1969) Chromatophores and pigments. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 3. Academic Press, New York, pp 307–353

    Google Scholar 

  • Fujii R (1993a) Coloration and chromatophores. In: Evans DH (ed) The physiology of fishes. CRC Press, Boca Raton, pp 535–562

    Google Scholar 

  • Fujii R (1993b) Cytophysiology of fish chromatophores. Int Rev Cytol 143: 191–255

    CAS  Google Scholar 

  • Fujii R, Miyashita Y (1975) Receptor mechanisms in fish chromatophores. I. Alpha nature of adrenoceptors mediating melanosome aggregation in guppy melanophores. Comp Biochem Physiol 51C: 171–178

    Google Scholar 

  • Fujii R, Miyashita Y (1976a) Beta adrenoceptors, cyclic AMP and melanosome dispersion in guppy melanophores. In: Riley V (ed) Pigment cell, vol 3. Karger, Basel, pp 336–344

    Google Scholar 

  • Fujii R, Miyashita Y (1976b) Receptor mechanisms in fish chromatophores. III. Neurally controlled melanosome aggregation in a siluroid (Parasilurus asotus) is strangely mediated by cholinoceptors. Comp Biochem Physiol 55C: 43–49

    CAS  Google Scholar 

  • Fujii R, Miyashita Y (1978) Receptor mechanisms in fish chromatophores. IV. Effects of melatonin and related substances on dermal and epidermal melanophores of the siluroid, Parasilurus asotus. Comp Biochem Physiol 59C: 59–63

    CAS  Google Scholar 

  • Fujii R, Miyashita Y (1979) Photoelectric recording of motile responses of fish leucophores. Annot Zool Jpn 53: 87–94

    Google Scholar 

  • Fujii R, Miyashita Y (1980) Action of melanophore-stimulating hormone on dermal and epidermal melanophores of siluroid, Parasilurus asotus. Yale J Biol Med 5: 422

    Google Scholar 

  • Fujii R, Miyashita Y (1982) Receptor mechanisms in fish chromatophores. V. MSH disperses melanosomes in both dermal ad epidermal melanophores of catfish (Parasilurus asotus). Comp Biochem Physiol 71C: 1–6

    Google Scholar 

  • Fujii R, Novales RR (1968) Tetrodotoxin: Effects on fish and frog melanophores. Science 160: 1123–1124

    CAS  Google Scholar 

  • Fujii R, Novales RR (1972) Nervous control of melanosome movements in vertebrate melanophores. In: Riley V (ed) Pigmentation: its genesis and biologic control. AppletonCentury-Crofts, New York, pp 315–326

    Google Scholar 

  • Fujii R, Oshima N (1986) Control of chromatophore movements in teleost fishes. Zool Sci 3: 13–47

    CAS  Google Scholar 

  • Fujii R, Taguchi S (1969) The responses of fish melanophores to some melanin-aggregating and dispersing agents in potassium-rich medium. Annot Zool Jpn 42: 176–182

    CAS  Google Scholar 

  • Fujii R, Nakazawa T, Fujii Y (1973) Effects of ultraviolet radiation on melanophore system of fish. In: McGovern VJ, Russel P (eds) Pigment cell, vol 1. Karger, Basel, pp 195–201

    Google Scholar 

  • Fujii R, Miyashita Y, Fujii Y (1982) Muscarinic cholinoceptors mediate neurally evoked pigment aggregation in glass catfish melanophores. J Neural Transm 54: 29–39

    PubMed  CAS  Google Scholar 

  • Fujii R, Oshima N, Miyashita Y (1985) Receptor mechanisms in fish chromatophores. VIII. Mediated by beta adrenoceptors, catecholamines always act to disperse pigment in siluroid melanophores. Comp Biochem Physiol 81C: 1–6

    CAS  Google Scholar 

  • Fujii R, Kasukawa H, Miyaji K, Oshima N (1989) Mechanism of skin coloration and its changes in blue-green damselfish, Chromis viridis. Zool Sci 6: 477–486

    Google Scholar 

  • Fujii R, Hayashi H, Toyohara J, Nishi H (1991a) Analysis of the light reflection from motile iridophores of the dark sleeper, Odontobutis obscura obscura. Zool Sci 8: 461–470

    Google Scholar 

  • Fujii R, Wakatabi H, Oshima N (1991b) Inositol 1,4,5-trisphosphate signals the motile response of fish chromatophores. I. Aggregation of pigment in the tilapia melanophore. J Exp Zool 259: 9–17

    CAS  Google Scholar 

  • Fujii R, Sugimoto M, Oshima N (1992) Blanching at night of denervated bands in teleostean tail fins is due to pigment aggregation in melanophores by melatonin. Comp Biochem Physiol 101A: 29–32

    CAS  Google Scholar 

  • Gray EG (1956) Control of the melanophores of the minnow (Phoxinus phoxinus (L.)). J Exp Biol 33: 448–459

    Google Scholar 

  • Hanyu I, Niwa H (1970) Pineal photosensitivity in three teleosts, Salmo irideus, Plecoglossus altivelis and Mugil cephalus. Rev Can Biol 29: 133–140

    PubMed  CAS  Google Scholar 

  • Hayashi H, Fujii R (1991) Muscarinic cholinoceptors mediate pigment aggregation within melanophores in some cyprinid fish, Zacco. Zool Sci 8: 1055

    Google Scholar 

  • Hayashi H, Sugimoto M, Oshima N, Fujii R (1993) Motile response of erythrophores in the red abdominal skin of tetra fishes and its possible significance in chromatic adaptation. Pigm Cell Res 6: 37–44

    CAS  Google Scholar 

  • Healey EG, Ross DM (1966) The effects of drugs on the background response of the minnow Phoxinus phoxinus L. Comp Biochem Physiol 19: 545–580

    PubMed  CAS  Google Scholar 

  • Iga T (1968) Action of catecholamines on the melanophores in the teleost. Zool Mag (Tokyo) 77: 19–26 (in Japanese)

    CAS  Google Scholar 

  • Iga T (1979) Alpha adrenoceptors: pigment aggregation in Oryzias leucophores. Mem Fac Sci Shimane Univ 13: 87–95

    Google Scholar 

  • Iga T (1983) Electric stimulation experiments on leucophores of a freshwater teleost, Oryzias latipes. Comp Biochem Physiol 74C: 103–108

    CAS  Google Scholar 

  • Iga T, Matsuno A (1986) Motile iridophores of a freshwater goby, Odontobutis obscura. Cell Tissue Res 244: 165–171

    Google Scholar 

  • Iga T, Takabatake I (1982) Action of melanophore-stimulating hormone on melanophores of the cyprinid fish Zacco temmincki. Comp Biochem Physiol 73C: 51–55

    CAS  Google Scholar 

  • Iga T, Takabatake I (1983) Melanophores of Zacco temmincki. (Teleostei) are light sensitive. J Exp Zool 227: 9–14

    PubMed  CAS  Google Scholar 

  • Iga T, Takabatake I (1986) Local light stimulation of melanophores of a teleost, Zacco temmincki. J Exp Zool 238: 385–391

    PubMed  CAS  Google Scholar 

  • Iga T, Yamada K, Iwakiri M (1977) Adrenergic receptors mediating pigment dispersion in leucophores of a teleost, Oryzias latipes. Mem Fac Lit Sci Shimane Univ Nat Sci 11: 63–72

    CAS  Google Scholar 

  • Imaki-Lamer H, Chavin W (1975) Ultrastructure of the integumental melanophores of the coelacanth, Latimeria chalumnae. Cell Tissue Res 163: 383–394

    Google Scholar 

  • Iwata KS, Fukuda H (1973) Central control of color changes in fish. In: Chavin W (ed) Responses of fish to environmental changes. Thomas, Springfield, pp 316–341

    Google Scholar 

  • Iwata KS, Watanabe M, Kurihara T (1959) Changes of state and response of the fish scale melanophore during continuous immersion in Ringer’s solution. Biol J Okayama Univ 5: 185–194

    CAS  Google Scholar 

  • Iwata KS, Takahashi T, Okada Y (1981) Nervous control in chromatophores of the medaka. In: Seiji M (ed) Pigment cell 1981: phenotypic expression in pigment cells. University Tokyo Press, Tokyo, pp 433–438

    Google Scholar 

  • Kamada T, Kinosita H (1944) Movements of granules in fish melanophores. Proc Imp Acad Tokyo 20: 484–492

    Google Scholar 

  • Kasukawa H, Fujii R (1984) Potassium ions act to release transmitter from “cholinergic” sympathetic postganglionic fiber to the glass catfish melanophore. Zool Sci 1: 553–558

    CAS  Google Scholar 

  • Kasukawa H, Fujii R (1985) Receptor mechanisms in fish chromatophores. VII. Muscarinic cholinoceptors and alpha adrenoceptors, both mediating pigment aggregation, strangely coexist in Corydoras melanophores. Comp Biochem Physiol 80C: 211–215

    CAS  Google Scholar 

  • Kasukawa H, Oshima N, Fujii R (1986a) Control of chromatophore movements in dermal chromatic units of blue damselfish. II. The motile iridophore. Comp Biochem Physiol 83C: 1–7

    CAS  Google Scholar 

  • Kasukawa H, Oshima N, Fujii R (1986b) A comparative survey on the type of sympathetic neuro-melanophore transmission in catfishes. Comp Biochem Physiol 85C: 115–120

    CAS  Google Scholar 

  • Kasukawa H, Oshima N, Fujii R (1987) Mechanism of light reflection in blue damselfish motile iridophore. Zool Sci 4: 243–257

    Google Scholar 

  • Kawai I (1989a) Light sensitive response of the scale xanthophores of a teleost, Oryzias latipes. Med Biol 118: 93–97 (in Japanese)

    Google Scholar 

  • Kawai I (1989b) Relation between light sensitive response of carotenoid droplet and calcium on a scale xanthophores of the medaka, Oryzias latipes. Med Biol 118: 141–145 (in Japanese)

    CAS  Google Scholar 

  • Kawauchi H, Kawazoe I, Tsubokawa M, Kishida M, Baker BI (1983) Characterization of melanin-concentrating hormone in chum salmon pituitaries. Nature 305: 321–323

    PubMed  CAS  Google Scholar 

  • Kohda Y, Watanabe M (1982) Agonistic behavior and color pattern in a Japanese freshwater serranid fish, Coreoperca kawamebari. Zool Mag (Tokyo) 91: 61–69

    Google Scholar 

  • Komatsu K, Yamada K (1982) Autordiographic visualization of beta adrenergic receptors in fish melanophores. J Exp Zool 223: 185–188

    Google Scholar 

  • Kumazawa T, Fujii R (1984) Concurrent releases of norepinephrine and purines by potassium from adrenergic melanosome-aggregating nerve in tilapia. Comp Biochem Physiol 78C: 263–266

    CAS  Google Scholar 

  • Kumazawa T, Fujii R (1986) Fate of adenylic co-transmitter released from adrenergic pigment-aggregating nerve to tilapia melanophore. Zool Sci 3: 599–603

    CAS  Google Scholar 

  • Kumazawa T, Oshima N, Fujii R, Miyashita Y (1984) Release of ATP from adrenergic nerves controlling pigment aggregation in tilapia melanophores. Comp Biochem Physiol 78C: 263–266

    CAS  Google Scholar 

  • Land MF (1972) The physics and biology of animal reflectors. Prog Biophys Mol Biol 24: 75–106

    PubMed  CAS  Google Scholar 

  • Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958) Isolation of melatonin; the pineal gland factor that lightens. J Am Chem Soc 80: 2587

    CAS  Google Scholar 

  • Levina S, Gordon R (1983) Methionine enkephalin-induced changes in pigmentation of zebrafish (Cyprinidae, Brachydanio rerio) and related species and varieties, measured videodensitometrically. Gen Comp Endocrinol 51: 370–377

    PubMed  CAS  Google Scholar 

  • Luby-Phelps K, Porter KR (1982) The control of pigment migration in isolated erythrophores of Holocentrus ascensionis (Osbeck). II. The role of calcium. Cell 29: 441–450

    PubMed  CAS  Google Scholar 

  • Lythgoe JN, Shand J (1982) Changes in spectral reflexions from the iridophores of the neon tetra. J Physiol 325: 23–34

    PubMed  CAS  Google Scholar 

  • Lythgoe JN, Shand J (1983) Diel colour changes in the neon tetra, Paracheirodon innesi. Environ Biol Fishes 8: 249–254

    Google Scholar 

  • Lythgoe JN, Shand J, Foster RG (1984) Visual pigment in fish iridocytes. Nature 308: 83–84

    CAS  Google Scholar 

  • Marsland DA (1944) Mechanism of pigment displacement in unicellular chromatophores. Biol Bull 87: 252–261

    CAS  Google Scholar 

  • Marsland DA, Meisner D (1967) Effects of D2O on the mechanism of pigment dispersal in the melanocytes of Fundulus heteroclitus. A pressure-temperature analysis. J Cell Physiol 70: 209–216

    PubMed  CAS  Google Scholar 

  • Matsumoto J (1979) Morphological and physiological events associated with pigment translocation in swordtail fish erythrophores. In: Klaus SN (ed) Pigment cell, vol 4, Karger, Basel, pp 56–63

    Google Scholar 

  • Matsumoto J, Watanabe Y, Obika M, Hadley ME (1978) Mechanisms controlling pigment movements within swordtail (Xiphophorus helleri) erythrophores in primary culture. Comp Biochem Physiol 61A: 509–517

    Google Scholar 

  • Matsumoto J, Akiyama T, Hirose Eu, Nakamura M, Yamamoto H, Takeuchi T (1991) Expression and transmission of the melanogenic phenotypes in the orange-colored mutant of medaka fish introduced with mouse tyrosinase gene. Zool Sci 9: 1081

    Google Scholar 

  • Miyashita Y, Fujii R (1973) Responses of guppy melanophores to 5-hydroxytryptamine. J Pre-Med Course Sapporo Med Coll 14: 39–44

    Google Scholar 

  • Miyashita Y, Fujii R (1975) Evidence for beta adrenoceptors mediating melanosome dispersion in guppy melanophores. Comp Biochem Physiol 51C: 179–187

    CAS  Google Scholar 

  • Miyashita Y, Fujii R (1977) Evidence for dopamine receptors mediating pigment dispersion in the melanophore of the siluroid. Parasilurus asotus—a preliminary note. J Pre-Med Course Sapporo Med Coll 18: 67–70

    Google Scholar 

  • Miyashita Y, Kumazawa T, Fujii R (1984) Receptor mechanisms in fish chromatophores. VI. Adenosine receptors mediate pigment dispersion in guppy and catfish melanophores. Comp Biochem Physiol 77C: 205–210

    CAS  Google Scholar 

  • Morishita F (1987) Responses of the melanophores of the medaka, Oryzias latipes, to adrenergic drugs: Evidence for involvement of alpha2 adrenergic receptors mediating melanin aggregation. Comp Biochem Physiol 88C: 69–74

    CAS  Google Scholar 

  • Morishita F, Yamada K (1989) Subtype of alpha adrenoceptors mediating leucosome aggregation in medaka leucophore. J Sci Hiroshima Univ Ser B Div 1, 33: 99–112

    Google Scholar 

  • Morishita F, Katayama H, Yamada K (1985) Subtypes of beta adrenergic receptors mediating pigment dispersion in chromatophores of the medaka, Oryzias latipes. Comp Biochem Physiol 81C: 279–285

    CAS  Google Scholar 

  • Muske L, Fernald RD (1987) Control of a teleost social signals: neural basis for differential expression of a color pattern. J comp Physiol 160: 89–97

    CAS  Google Scholar 

  • Nagai M, Oshima N, Fujii R (1986) A comparative study of melanin-concentrating hormone ( MCH) action on teleost melanophores. Biol Bull 171: 360–370

    CAS  Google Scholar 

  • Nagaishi H, Oshima N (1989) Neural control of motile activity of light-sensitive iridophores in the neon tetra. Pigm Cell Res 2: 485–492

    CAS  Google Scholar 

  • Nagaishi H, Oshima N (1992) Ultrastructure of the motile iridophores of the neon tetra. Zool Sci 9: 65–75

    Google Scholar 

  • Nagaishi H, Nishi H, Fujii R, Oshima N (1989) Correlation between body color and behavior in the upside-down catfish, Synodontis nigriventris. Comp Biochem Physiol 92A: 323–326

    Google Scholar 

  • Nagaishi H, Oshima N, Fujii R (1990) Light-reflecting properties of the iridophores of the neon tetra, Paracheirodon innesi. Comp Biochem Physiol 95A: 337–341

    Google Scholar 

  • Nagaishi H, Oshima N, Fujii R (1992) Effects of atropine on the melanophores and lightreflecting chromatophores of some teleost fishes. Comp Biochem Physiol 103C: 363–368

    Google Scholar 

  • Naitoh T, Iwata KS (1976) Anomalous colour response of Odontobutis to intense illumination. Biol J Okayama Univ 17: 41–45

    Google Scholar 

  • Naitoh T, Morioka A, Omura Y (1985) Adaptation of a common freshwater goby, yoshinobori, Rhinogobius brunneus Temminck et Schlegel to various backgrounds including those containing different sizes of black and white checkerboard squares. Zool Sci 2: 59–63

    Google Scholar 

  • Namoto S, Yamada K (1983) Effects of monovalent cations on denervated fish melanophores, with special reference to the action of lithium ions. J Sci Hiroshima Univ Ser B Div 1 31: 107–115

    Google Scholar 

  • Namoto S, Yamada K (1987) Effects of forskolin, isoproterenol and lithium ions on leucophores of a teleost, Oryzias latipes: evidence for involvement of adenylate cyclase in pigment-dispersion response. Comp Biochem Physiol 86C: 91–95

    CAS  Google Scholar 

  • Naora H, Iga T (1989) Light response of cultured melanophores of a freshwater teleost, Zacco temmincki. Cell Struct Funct 14: 113–120

    PubMed  CAS  Google Scholar 

  • Naora H, Takabatake I, Iga T (1988) Spectral sensitivity of melanophores of a freshwater teleost, Zacco temmincki. Comp Biochem Physiol 90A: 147–149

    CAS  Google Scholar 

  • Needham AE (1974) Significance of zoochromes. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Negishi S (1985) Light response of cultured melanophores of a teleost adult fish, Oryzias latipes. J Exp Zool 236: 327–333

    Google Scholar 

  • Negishi S (1988) The involvement of microtubules in the light response of medaka melanophores. Zool Sci 5: 951–957

    Google Scholar 

  • Negishi S, Obika M (1980) The effects of melanophore-stimulating hormone and cyclic nucleotides on teleost fish chromatophores. Gen Comp Endocrinol 42: 471–476

    PubMed  CAS  Google Scholar 

  • Negishi S, Obika M (1985a) The role of calcium and magnesium on pigment translocation in melanophores of Oryzias latipes. In: Bagnara J, Klaus SN, Paul E, Schartl M (eds) Pigment cell 1985. University Tokyo Press, Tokyo, pp 233–239

    Google Scholar 

  • Negishi S, Obika M (1985b) Effects of hexylene glycol and nocodazole on microtubules and melanosome translocation in melanophores of the medaka Oryzias latipes. J Exp Zool 235: 55–63

    Google Scholar 

  • Negishi S, Fernandez HRC, Obika M (1985) The effects of dynein ATPase inhibitors on melanosome translocation within melanophores of the medaka, Oryzias latipes. Zool Sci 2: 469–475

    CAS  Google Scholar 

  • Nishi H, Fujii R (1993) Novel receptors for melatonin that mediate pigment dispersion are present in some melanophores of the pencil fish (Nannostomus). Comp Biochem Physiol 103C: 263–268

    Google Scholar 

  • Novales RR, Fujii R (1970) A melanin-dispersing effect of cyclic adenosine monophosphate on Fundulus melanophores. J Cell Physiol 75: 133–136

    PubMed  CAS  Google Scholar 

  • Obika M (1976) An analysis of the mechanism of pigment migration in fish chromatophores. In: Riley V (ed) Pigment cell, vol 3. Unique properties of melanocytes, Karger, Basel, pp 254–265

    Google Scholar 

  • Obika M (1986) Intracellular transport of pigment granules in fish chromatophores. Zool Sci 3: 1–11

    CAS  Google Scholar 

  • Obika M (1988) Ultrastructure and physiological response of leucophores of the medaka Oryzias latipes. Zool Sci 5: 311–321

    Google Scholar 

  • Obika M, Meyer-Rochow VB (1990) Dermal and epidermal chromatophores of the Antarctic teleost Trematomus bernacchil. Pigm Cell Res 3: 33–37

    CAS  Google Scholar 

  • Obika M, Lo SJ, Tchen TT, Taylor JD (1978) Ultrastructural demonstration of hormone-induced movement of carotenoid droplets and endoplasmic reticulum in xanthophores of the goldfish, Carassius auratus L. Cell Tissue Res 190: 409–416

    PubMed  CAS  Google Scholar 

  • Odiorne JM (1957) Color changes. In: Brown ME (ed) The physiology of fishes, vol 2, Academic Press, New York, pp 387–401

    Google Scholar 

  • Ohta T (1983) Melanosome dispersion in direct response to light in melanophores of Rhodeus ocellatus fry. Annot Zool Jpn 56: 155–162

    Google Scholar 

  • Ohta T. Muramatsu K (1988) Spectral sensitivity of melanophoress in the primary color response of the rose bitterling, Rhodeus ocellatus. Jpn J Ichthyol 34: 483–487

    Google Scholar 

  • Ohta T, Sugimoto S (1980) Leucosome dispersion under light in medaka leucophores. Jpn J Ichthyol 27: 72–76 (in Japanese)

    Google Scholar 

  • Olivereau M, Olivereau J (1985) Effects of 17a-methyltestosterone on the skin and gonads of freshwater male silver eels. Gen Comp Endocrinol 57: 64–71

    PubMed  CAS  Google Scholar 

  • Oshima N (1989) Adenosine inhibits the release of neurotransmitters from melanosomeaggregating nerves of fish. Comp Biochem Physiol 93C: 207–211

    Google Scholar 

  • Oshima N, Fujii R (1984) A precision photoelectric method for recording chromatophore responses in vitro. Zool Sci 1: 545–552

    Google Scholar 

  • Oshima N, Fujii R (1985) Calcium requirement for MSH action on non-melanophoral chromatophores of some fish. Zool Sci 2: 127–129

    CAS  Google Scholar 

  • Oshima N, Fujü R (1987) Motile mechanism of blue damselfish (Chrysiptera cyanea) iridophores. Cell Moth Cytoskeleton 8: 85–90

    Google Scholar 

  • Oshima N, Nagaishi H (1992) Study of the motile mechanism in neon tetra (Paracheirodon innesi) iridophores. Comp Biochem Physiol 102A: 273–278

    Google Scholar 

  • Oshima N, Fujii R, Kasukawa H (1984) Simultaneous recording of motile responses of light-absorbing and reflecting chromatophores in vitro. Zool Sci 1: 711–717

    Google Scholar 

  • Oshima N, Kasukawa H, Fujii R, Wilkes BC, Hruby VJ, Castrucci AML, Hadley ME (1985) Melanin concentrating hormone (MCH) effects on teleost (Chrysiptera cyanea) melanophores. J Exp Zool 235: 175–180

    PubMed  CAS  Google Scholar 

  • Oshima N, Kasukawa H, Fujii R, Wilkes BC, Hruby VJ, Hadley ME (1986a) Action of melanin-concentrating hormone (MCH) on teleost chromatophore. Gen Comp Endocrinol 64: 381–388

    PubMed  CAS  Google Scholar 

  • Oshima N, Yamaji N, Fujii R (1986b) Adenosine receptors mediate pigment dispersion in leucophores of the medaka, Oryzias latipes. Comp Biochem Physiol 85C: 245–248

    CAS  Google Scholar 

  • Oshima N, Furuuchi T, Fujii R (1986c) Cyclic nucleotide action is mediated through aden- osine receptors in damselfish motile iridophores. Comp Biochem Physiol 85C: 89–93

    CAS  Google Scholar 

  • Oshima N, Suzuki M, Yamaji N, Fujii R (1988) Pigment aggregation is triggered by an increase in free calcium ions within fish chromatophores. Comp Biochem Physiol 91A: 27–32

    Google Scholar 

  • Oshima N, Kasukawa H, Fujii R (1989) Control of chromatophore movements in the blue-green damselfish, Chromis viridis. Comp Biochem Physiol 93C: 239–245

    Google Scholar 

  • Oshima N, Hayakawa M, Sugimoto M (1990a) The involvement of calmodulin in motile activities of fish chromatophores. Comp Biochem Physiol 97C: 33–36

    Google Scholar 

  • Oshima N, Inagaki H, Manabe T (1990b) Evidence for involvement of dynein-tubulin system in pigment aggregation within tilapia melanophores. Comp Biochem Physiol 96A: 517–523

    Google Scholar 

  • Oshima N, Kitta K, Bern HA (1990c) Reexamination of the effect of prolactin on the teleost fish chromatophores. Zool Sci 7: 1019

    Google Scholar 

  • Oshima N, Sugimoto M, Fujii R (1992) Effects of choline chloride on the pigment translocation within fish melanophores. Comp Biochem Physiol 102C: 11–15

    Google Scholar 

  • Pandey AK, Shukla L, Fujii R, Miyashita Y (1981) Effects of sublethal malathion exposure on melanophores of a cichlid, Sarotherodon mossambicus. J Lib Arts Sci Sapporo Med Coll 22: 77–81

    Google Scholar 

  • Parker GH (1948) Animal colour changes and their neurohumours. Cambridge University Press, Cambridge

    Google Scholar 

  • Pickford G, Atz JW (1957) The physiology of the pituitary gland of fishes. New York Zoological Soc, New York

    Google Scholar 

  • Pye JD (1964) Nervous control of chromatophores in teleost fishes. III. Local temperature responses in the minnow (Phoxinus phoxinus (L.)). J Exp Biol 41: 543–552

    CAS  Google Scholar 

  • Rasquin P (1958) Studies in the control of pigment cells and light reactions in recent teleost fishes. Bull Am Mus Nat Hist 115: 1–68

    Google Scholar 

  • Reed BL (1968) The control of circadian pigment changes in the pencil fish: a proposed role for melatonin. Life Sci Part II 7: 961–973

    CAS  Google Scholar 

  • Reed BL, Finnin BC (1972) Adrenergic innvervation of melanophores in a teleost fish. In: Riley V (ed) Pigmentation: its genesis and biologic control. Appleton-Century-Crofts, New York, pp 285–294

    Google Scholar 

  • Robertson OH (1949) Production of the silvery smolt stage in rainbow trout by intramuscular injection of mammalian thyroid extract and thyrotropic hormone. J Exp Zool 110: 337–355

    PubMed  CAS  Google Scholar 

  • Robentson OH (1951) Factors influencing the state of dispersion of the dermal melanophores in rainbow trout. Physiol Zool 24: 309–323

    Google Scholar 

  • Rodrigues KT, Sumpter JP (1984) Effects of background adaptation on the pituitary and plasma concentrations of some pro-opiomelano-cortin-related peptides in the rainbow trout (Salmo gairdneri). J Endocrinol 101: 227–284

    Google Scholar 

  • Rohrlich ST (1974) Fine structural demonstration of ordered arrays of cytoplasmic filaments in vertebrate iridophores. J Cell Biol 62: 295–304

    PubMed  CAS  Google Scholar 

  • Sage M (1970) Control of prolactin release and its role in color change in the teleost Gillichthys mirabilis. J Exp Zool 173: 121–127

    CAS  Google Scholar 

  • Satake N (1980) Effects of methionine-enkephalin on xanthophore aggregation. Peptides 1: 73–75

    PubMed  CAS  Google Scholar 

  • Schelíne RR (1963) Adrenergic mechanisms in fish: chromatophore pigment concentration in cuckoo wrasse, Labrus ossifagus L. Comp Biochem Physiol 9: 215–227

    Google Scholar 

  • Schliwa M (1984) Mechanisms of intracellular organelle transport. Cell Muscle Motif 5: 1–82

    CAS  Google Scholar 

  • Schliwa M (1987) Review article: Permeabilized cell models for the study of granule transport in pigment cells. Pigm Cell Res 1: 65–68

    CAS  Google Scholar 

  • Schliwa M, Bereiter-Hahn J (1973) Pigment movements in fish melanophores: morphological and physiological studies. II. Cell shape and microtubules. Z Zellforsch 147: 107–125

    PubMed  CAS  Google Scholar 

  • Scott GT (1965) Physiology and pharmocology of color change in the flounder Scopthalmus aquosus. Limnol Oceanogr 10: R230 - R246

    Google Scholar 

  • Smith DC (1928) The effects of temperature on the melanophores of fishes. J Exp Zool 52: 183–234

    Google Scholar 

  • Smith DC (1931) The effect of temperature changes upon the pulsations of isolated scale melanophores of Fundulus heteroclitus. Biol Bull 60: 269–287

    Google Scholar 

  • Spaeth RA (1913) The physiology of the chromatophores of fishes. J Exp Zool 15: 527–585

    Google Scholar 

  • Sugimoto M, Oshima N, Fujii R (1985) Mechanisms controlling motile responses of amelanotic melanophores in the medaka, Oryzias latipes. Zool Sci 2: 317–322

    CAS  Google Scholar 

  • Thaler CD, Haimo LT (1990) Regulation of organelle transport in melanophores by calcineurin. J Cell Biol 111: 1939–1948

    PubMed  CAS  Google Scholar 

  • Thaler CD, Haimo LT (1992) Control of organelle transport in melanophores: regulation of Ca’ and cAMP levels. Cell Motil Cytoskeleton 22: 175–184

    PubMed  CAS  Google Scholar 

  • Tornita G (1936) Melanophore reactions to light during the early stages of the paradise fish, Macropodus opercularis. J Shanghai Sci Inst Sec IV 2: 237–264

    Google Scholar 

  • von Frisch K (1911) Beiträge zur Physiologie der Pigmentzellen in der Fischhaut. Pflügers Archiv Gesamte Physiol Menschen Tiere 138: 319–387

    Google Scholar 

  • Wakamatsu Y (1978) Light-sensitive fish melanophores in culture. J Exp Zool 204: 299–304

    Google Scholar 

  • Wakamatsu Y, Kawamura S, Yoshizawa T (1980) Light-induced pigment aggregation in cultured fish melanophores: Spectral sensitivity and inhibitory effects of theophylline and cyclic adenosine-3’,5’-monophosphate. J Cell Sci 41: 65–74

    PubMed  CAS  Google Scholar 

  • Waring H (1963) Color change mechanisms of cold-blooded vertebrates. Academic Press, New York

    Google Scholar 

  • Watanabe M (1960) The mode of action of atropin on melanophores in the isolated scale of a crucian crap. Biol J Okayama Univ 6: 114–123

    CAS  Google Scholar 

  • Watanabe M (1961) Pulsations of the scale melanophore in the crucian carp. Biol J Okayama Univ 7: 65–85

    Google Scholar 

  • Wikswo MA, Novales RR (1969) The effect of colchicine on migration of pigment granules in the melanophores of Fundulus heteroclitus. Biol Bull 137: 228–237

    PubMed  CAS  Google Scholar 

  • Wilkes BC, Hruby VJ, Castrucci AML, Sherbrooke WC, Hadley ME (1984) Synthesis of a cyclic melanotropic peptide exhibiting both melanin-concentrating and -dispersing activities. Science 224: 1111–1113

    PubMed  CAS  Google Scholar 

  • Woodhead AD (1966) Effects of thyroid drugs on the larvae of the brown trout, Salmo trutta. J Zool (Lond) 149: 394–413

    CAS  Google Scholar 

  • Yamada K (1980) Actions of sympathomimetic amines on leucophores in isolated scales of a teleost fish with special reference to beta-adrenoceptors mediating pigment dispersion. J Sci Hiroshima Univ Ser B Div 1 28: 95–114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fujii, R., Oshima, N. (1994). Factors Influencing Motile Activities of Fish Chromatophores. In: Advances in Comparative and Environmental Physiology. Advances in Comparative and Environmental Physiology, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78598-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78598-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78600-6

  • Online ISBN: 978-3-642-78598-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics