Skip to main content

Translational and Rotational Diffusion Near the Glass Transition

  • Chapter

Abstract

Diffusional transport is involved in most relaxation processes in condensed matter. In one component systems this transport is usually termed “self- diffusion” since the molecules move among themselves. Nevertheless some kind of labeling must be possible in order to observe “tracer” molecules moving relative to their neighbors. The best labels for self diffusion experiments are nuclear spin states used in the NMR methods described below. In all other techniques, the motion of the tracer molecules is somewhat different from that of the environment and should, strictly speaking, be termed “tracer-diffusion”. The corresponding self- or tracer-diffusion coefficients are related to the mean square displacement of the position r(t) by

$$D = \frac{{\lim }}{{t \to \infty }}\,\{ \langle [r(t) - r(0)]^2 \rangle /6t\} \,,$$
(3.1)

where the brackets denote the ensemble average. For rotational diffusion, the position r(i) is replaced by the orientation Q(t) of some molecule fixed with respect to a space fixed coordinate system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

DWF:

Debye Waller factor

FRS:

Forced Rayleigh scattering

KWW:

Kohlrausch Williams-Watts

MCT:

Mode coupling theory

OTP:

Orthoterphenyl

PCS:

Photon correlation spectroscopy

PMMA:

Polymethylmethacrylate

RF:

Radio frequency

TOF:

Time of flight

VFT:

Vogel Fulcher-Tammann

References

  1. van Hove L (1954) Phys Rev 95:249

    Article  Google Scholar 

  2. Egelstaff PA (1992) An introduction to the liquid state (2nd edn) Clarendon, Oxford

    Google Scholar 

  3. Binder K, Sillescu H (1989) Diffusion, polymer-polymer. In: Mark, Bikales, Overberger, Menges (eds) Encyclopedia of polymer science and engineering, supplem. Vol 2nd ed p 297–315. Wiley, New York

    Google Scholar 

  4. Akeasu AZ (1993) In: Brown W (ed) Dynamic light scattering. The method and some applications. Oxford Univ., Oxford.

    Google Scholar 

  5. Hansen JP, McDonald IR (1986) Theory of simple liquids. Academic, London

    Google Scholar 

  6. Angell CA (1988) J Phys Chem Solids 49:863

    Article  CAS  Google Scholar 

  7. Cohen MH, Turnbull D (1959) J Chem Phys 31:1164

    Article  CAS  Google Scholar 

  8. Doolittle AK (1951) J Appl Phys 22:1471

    Article  CAS  Google Scholar 

  9. Cohen MH, Grest GS (1979) Phys Rev B20:1077

    Google Scholar 

  10. Grest GS, Cohen MH (1981) Adv Chem Phys 48:455

    Article  CAS  Google Scholar 

  11. Ferry JD (1980) Viscoelastic properties of polymers (3rd. edn) Wiley, London

    Google Scholar 

  12. Coughlin CS, Mauritz KA, Storey RF (1991) Macromolecules 24:1526 and references therein

    Article  CAS  Google Scholar 

  13. Miyagawa H, Hiwatari Y (1988) J Chem Phys 88:3879

    Article  CAS  Google Scholar 

  14. Adam G, Gibbs JH (1965) J Chem Phys 28:373

    Google Scholar 

  15. Angell CA (1991) J Non-Cryst Solids 131–133:13

    Article  Google Scholar 

  16. Jäckle J (1986) Rep Prog Phys 49:171

    Article  Google Scholar 

  17. Fredrickson GH (1988) Ann Rev Phys Chem 39:149

    Article  CAS  Google Scholar 

  18. Donth EJ (1992) Relaxation thermodynamics in polymers. Glass transition. Akademie-Verlag, Berlin

    Google Scholar 

  19. see Discussion Session in Relaxation in complex systems, Eds K.L. Ngai, G.B. Wright, J Non- Cryst Solids 131–133, 378 (1991)

    Google Scholar 

  20. McQuarrie DA (1976) Statistical mechanics. Harper and Row, New York

    Google Scholar 

  21. Götze W (1991) In: Hansen JP, Levesque D, Zinn-Justin J (eds) Liquids, freezing and the glass transition. Les Houches Session LI 1989. Elsevier, Amsterdam

    Google Scholar 

  22. Götze W, Sjögren L (1992) Rep Prog Phys 55:241

    Article  Google Scholar 

  23. Schilling R, this volume

    Google Scholar 

  24. Kawasaki K (1970) Ann Phys (N.Y.) 61:1

    Article  CAS  Google Scholar 

  25. Leutheusser E (1984) Phys Rev A29:2765

    Google Scholar 

  26. Bengtzelius U, Götze W, Sjölander A (1984) J Phys C17:5915

    Google Scholar 

  27. Das SP, Mazenko GF (1986) Phys Rev A34:2265

    Google Scholar 

  28. Götze W, Sjögren L (1987) Z Phys B65:415

    Article  Google Scholar 

  29. Götze W (1990) J Phys Condens Matter 2:8485

    Article  Google Scholar 

  30. Fleischer G, Geschke D, Kärger J, Heink W (1985) J Magnet Res 65:429

    CAS  Google Scholar 

  31. Kimmich R, Unrath W, Schnur G, Rommel E (1991) J Magnet Res 91:136

    CAS  Google Scholar 

  32. Callaghan P (1991) Principles of NMR microscopy. Clarendon, Oxford

    Google Scholar 

  33. Spiess HW (1978) In: Diehl P, Fluck E, Kosfeld R (eds) NMR basic principles and progress, Vol 15, p 55, Springer, Berlin, Heidelberg, New York

    Google Scholar 

  34. Schnauss W, Füjara F, Sillescu H (1992) J Chem Phys 97:1378

    Article  CAS  Google Scholar 

  35. Spiess HW (1991) Chem Rev 91:1321

    Article  CAS  Google Scholar 

  36. Schmidt-Rohr K, Spiess HW (1991) Phys Rev Lett 66:3020

    Article  CAS  Google Scholar 

  37. Peters R, Peters I, Tews KH, Bähr W (1974) Biochim Biophys Acta 367:282

    Article  CAS  Google Scholar 

  38. Smith BA, Samulski LP, Yu LP, Winnik MA (1984) Phys Rev Lett 52:1

    Article  Google Scholar 

  39. Cicerone MT, Ediger MD (1992) J Chem Phys 97:2156

    Article  CAS  Google Scholar 

  40. Eichler HJ, Günther P, Pohl DW (1986) Laser-induced dynamic gratings. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  41. Sillescu H, Ehlich D (1990) Application of holographic grating techniques to the study of diffusion processes in polymers. In: JP Founassier, Rabek JF (eds) Lasers in polymer science and technology: Applications, Vol III, p 211–226. CRC, Boca Raton (Florida)

    Google Scholar 

  42. Ehlich D, Sillescu H (1990) Macromolecules 23:1600

    Article  CAS  Google Scholar 

  43. Chu B (1991) Laser light scattering (2nd edn) Academic, London

    Google Scholar 

  44. Berne BJ, Pecora R (1976) Dynamic light scattering. Wiley, New York

    Google Scholar 

  45. Pusey PN, Tough RJA (1985). In: Pecora R (ed) Dynamic light scattering. Plenum, New York

    Google Scholar 

  46. Pusey PN (1991). In: Hansen JP, Levesque D, Zinn-Justin J (eds) Liquids, freezing and the glass transition. Les Houches Session LI 1989. Elsevier, Amsterdam

    Google Scholar 

  47. Schätzel K, Schulz-Dubois EO (1991) Infrared Phys 32:409

    Article  Google Scholar 

  48. Steffen W, Patkowsi A, Meier G, Fischer EW (1992) J Chem Phys 96:4171

    Article  CAS  Google Scholar 

  49. Li G, Du WM, Chen XK, Cummins HZ, Tao NJ (1992) Phys Rev A45:3667

    Google Scholar 

  50. Böttcher CJF, Boredewijk P (1978) Theory of electric polarization Vol II. Elsevier, Amsterdam

    Google Scholar 

  51. Dixon PK, Nagel SR (1988) Phys Rev Lett 61:341

    Article  CAS  Google Scholar 

  52. Kremer F, Hofmann A, Fischer EW, this volume

    Google Scholar 

  53. Bee M (1988) Quasielastic neutron scattering. Hilger, Bristol

    Google Scholar 

  54. Mezei F (1991) In: Hansen JP, Levesque D, Zinn-Justin J (eds) Liquids, freezing and the glass transition. Les Houches Session LI 1989. Elsevier, Amsterdam

    Google Scholar 

  55. Stamm M (1992) Advan Polym Sci 100:357

    Article  CAS  Google Scholar 

  56. Rössler E (1990) J Chem Phys 92:3725

    Article  Google Scholar 

  57. Taborek P, Kleiman RN, Bishop DJ (1986) Phys Rev B34:1835

    Google Scholar 

  58. Bartsch E, Kiebel M, Fujara F, Petry W, Sillescu H (1989). In: Richter D, Dianoux AJ, Petry W, Teixeira J (eds) Dynamics of disordered materials. Springer Proceedings in Physics 37:135, Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  59. Bartsch E, Fujara F, Kiebel M, Sillescu H, Petry W (1989) Ber Bunsenges Phys Chem 93:1252

    CAS  Google Scholar 

  60. Petry W, Bartsch E, Fujara F, Kiebel M, Sillescu H, Farago B (1991) Z Phys B83:17

    Google Scholar 

  61. Debus O, Zimmermann H, Bartsch E, Fujara F, Petry W, Sillescu H (1991) Chem Phys Lett 180:271

    Article  CAS  Google Scholar 

  62. Kiebel M, Bartsch E, Debus O, Fujara F, Petry W, Sillescu H (1992) Phys Rev B45:10301

    Google Scholar 

  63. Bartsch E, Bertagnolli H, Chieux P, David A, Sillescu H (1993) Chem Phys 169, 373

    Article  CAS  Google Scholar 

  64. Wuttke J, Kiebel M, Bartsch E, Fujara F, Petry W, Sillescu H (1993) Z Phys B, 91:357

    Article  CAS  Google Scholar 

  65. Kiebel M (1992) Molekulare Dynamik von viskosem und glasartigem ortho-Terphenyl untersucht mit inkohärenter Neutronenstreuung. Ph.D. Thesis, Universität Mainz

    Google Scholar 

  66. Dries Th, Fujara F, Kiebel M, Rössler E, Sillescu H (1988) J Chem Phys 88:2139

    Article  CAS  Google Scholar 

  67. Schnauss W, Fujara F, Hartmann K, Sillescu H (1990) Chem Phys Lett 166:381

    Article  CAS  Google Scholar 

  68. Fujara F, Geil B, Sillescu H, Fleischer G (1992) Z Phys B88:195

    Article  Google Scholar 

  69. Lohfink M, Sillescu H (1992). In: Proceed. 1st Tohwa University Internat Symp Fukuoka, Jpn, Kawasaki K, Tokuyama M, Kawakatsu T (eds) AIP Conf Proceed 256:30. Amer Inst Phys, New York

    Chapter  Google Scholar 

  70. Van Megen W, Pusey PN (1991) Phys Rev A43:5429

    Google Scholar 

  71. Götze W, Sjögren L (1991) Phys Rev A 43:5442

    Article  Google Scholar 

  72. Bartsch E, Antonietti M, Schupp W, Sillescu H (1992) J Chem Phys 97:3950

    Article  CAS  Google Scholar 

  73. Tyrrell HJV, Harris KR (1984) Diffusion in liquids. Butterworths, London

    Google Scholar 

  74. McCall DW, Douglass DC, Falcone DR (1969) J Chem Phys 50:3839

    Article  CAS  Google Scholar 

  75. McLaughlin E, Ubbelohde AR (1958) Trans Faraday Soc 54:1804

    Article  CAS  Google Scholar 

  76. Laughlin WT, Uhlman DR (1972) J Phys Chem 76:2317

    Article  CAS  Google Scholar 

  77. Cukiermann M, Lane JW, Uhlman DR (1973) J Chem Phys 59:3639

    Article  Google Scholar 

  78. Hellberger G, Sillescu H (1992) Polymer Preprints 33:105

    Google Scholar 

  79. Sjögren L, Götze W (1989). In: Richter D, Dianoux AJ, Petry W, Teixeira J (eds) Dynamics of disordered materials. Springer Proceedings in Physics 37:18, Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  80. Vrentas JS, Duda JL (1977) J Chem Sei (Polym Phys Ed) 15:403

    Article  CAS  Google Scholar 

  81. Vrentas JS, Duda JL, Hou AC (1986) J Appl Polym Sci 31:739

    Article  CAS  Google Scholar 

  82. Adachi K (1990) Macromolecules 23:1816

    Article  CAS  Google Scholar 

  83. Matsuoka S, Quan (1991) J Non-Cryst Solids 293:131

    Google Scholar 

  84. Stillinger FH (1988) 89:6461

    Google Scholar 

  85. Flynn CP (1972) Point defects and diffusion. Clarendon, Oxford

    Google Scholar 

  86. Huber DL (1973) J Chem Phys 78:2530

    Article  Google Scholar 

  87. Grünewald M, Pohlmann B, Movaghar B, Würz D (1984) Phil Mag B49:341

    Google Scholar 

  88. Bässler H (1987) Phys Rev Lett 58:767

    Article  Google Scholar 

  89. Frauenfelder H (1984) Helv Phys Acta 57:165

    CAS  Google Scholar 

  90. Klinger MI (1988) Phys Rep 165:275

    Article  CAS  Google Scholar 

  91. Vilgis T, this volume

    Google Scholar 

  92. Bässler H, this volume

    Google Scholar 

  93. Richert R, Bässler H (1990) J Phys Condens Matter 2:2273

    Article  Google Scholar 

  94. Fujara F, Petry W (1987) Europhys Lett 4:921

    Article  CAS  Google Scholar 

  95. Bartsch E, Debus O, Fujara F, Kiebel M, Petry W, Sillescu H, Magill JH (1992) Physica B180&181:808

    Google Scholar 

  96. Mezei F, Knaak W (1987) Phys Scr T19:363

    Article  Google Scholar 

  97. Richter D, Frick B, Farago B (1988) Phys Rev Lett 61:2465

    Article  CAS  Google Scholar 

  98. Frick B, Farago B, Richter D (1990) Phys Rev Lett 64:2921

    Article  CAS  Google Scholar 

  99. Elmroth M, Börjesson L, Torell LM (1992) Phys Rev Lett 68:79

    Article  CAS  Google Scholar 

  100. Sjögren L (1990) Z Phys B79:5

    Article  Google Scholar 

  101. Fuchs M, Götze W, Hildebrand S, Latz A (1992) J Phys Condens Matter 4:7709

    Article  Google Scholar 

  102. Cummins HZ, Du WM, Fuchs M, Götze W, Hildebrand S, Latz A, Li G, Tao NJ (1993) Phys Rev E47:4223

    Google Scholar 

  103. Pusey PN, Van Megen W (1987) Phys Rev Lett 59:2083

    Article  CAS  Google Scholar 

  104. Pusey PN, Van Megen W (1990) Ber Bunsenges Phys Chem 94:225

    CAS  Google Scholar 

  105. Fuchs M, Hofacker I, Latz A (1992) Phys Rev A45:898

    Google Scholar 

  106. Fuchs M, Götze W, Hildebrand S, Latz A (1992) Z Phys B87:43

    Article  Google Scholar 

  107. Van Megen W, Underwood SM, Pusey PN (1991) Phys Rev Lett 67:1586

    Article  Google Scholar 

  108. Pusey PN, Van Megen W (1989) Physica A157:705

    Google Scholar 

  109. Götze W, Sjögren L (1992) In: Proceed. 1st Tohwa University Internat Symp Fukuoka, Jpn, Kawasaki K, Tokuyama M, Kawakatsu T (eds) AIP Conf Proceed 256:95. Amer Inst Phys, New York

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sillescu, H., Bartsch, E. (1994). Translational and Rotational Diffusion Near the Glass Transition. In: Richert, R., Blumen, A. (eds) Disorder Effects on Relaxational Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78576-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78576-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78578-8

  • Online ISBN: 978-3-642-78576-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics