Active Media with Long-Range Inhibition

  • Alexander S. Mikhailov
Part of the Springer Series in Synergetics book series (SSSYN, volume 51)


In this chapter we consider stationary patterns that are formed in a special class of two-component media, where one of the components can be treated as an activator and the other as an inhibitor. Generally, an isolated element of such a medium can be either bistable, or excitable, or oscillatory. This distinction becomes, however, of minor importance if inhibition is long-range (for instance, when the diffusion constant of an inhibitor component is very large) and if it quickly adjusts to the momentary distribution of an activator. These conditions favor the formation of stable stationary dissipative patterns.


Active Medium Critical Nucleus Spatial Period Spike Pattern Dissipative Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 5.1
    V.V. Barelko, V.M. Beibutyan, Yu.V. Volodin, Ya.B. Zeldovich: Dokl. Akad. Nauk SSSR 257, 339–344 (1981)Google Scholar
  2. 5.2
    A.M. Turing: Phil. Trans. Roy. Soc. 237, 37–72 (1952)CrossRefADSGoogle Scholar
  3. 5.3
    I. Prigogine, R. Lefever: J, Chem. Phys. 48, 1695 (1968)CrossRefADSGoogle Scholar
  4. 5.4
    I. Prigogine, R. Lefever: J. Chem. Phys. 49, 283–292 (1968)Google Scholar
  5. 5.5
    G. Nicolis, I. Prigogine: Self-Organization in Nonequilibrium Systems (Wiley, New York 1977)zbMATHGoogle Scholar
  6. 5.6
    V.A. Vasilev, Yu.M. Romanovskii, D.S. Chernavskii, V.G. Yakhno: Autowave Processes in Kinetic Systems (Reidel, Dordrecht 1986)Google Scholar
  7. 5.7
    B.N. Belintsev: Usp. Fiz. Nauk: 141, 55–101 (1983)CrossRefMathSciNetGoogle Scholar
  8. 5.8
    B.S. Kerner, V.V. Osipov: Sov. Phys. Usp. 32, 101–138 (1989)CrossRefADSGoogle Scholar
  9. 5.9
    B.S. Kerner, V.V. Osipov: Zh. Eksp. Teor. Fiz. 74, 1675–1697 (1978)ADSGoogle Scholar
  10. 5.10
    B.S. Kerner, V.V. Osipov: Zh. Eksp. Teor. Fiz. 79, 2218–2238 (1979)MathSciNetGoogle Scholar
  11. 5.11
    B.S. Kerner, V.V. Osipov: “Autosolitons in active systems with diffusion” in Self-Organization by Nonlinear Irreversible Processes ed. by W. Ebeling and H. Ulbricht (Springer, Berlin, Heidelberg 1986) pp. 118-127Google Scholar
  12. 5.12
    B.S. Kerner, V.I. Krinsky, V.V. Osipov: “Structures in models of morphogenesis” in Thermodynamics and Pattern Formation in Biology (de Gruyter, Berlin 1988) pp. 265-320Google Scholar
  13. 5.13
    B.S. Kerner, V.V. Osipov: Zh. Eksp. Teor. Fiz. 83, 2201–2214 (1982)Google Scholar
  14. 5.14
    B.S. Kerner, V.V. Osipov: Dokl. Akad. Nauk SSSR 270, 1104–1108 (1983)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Alexander S. Mikhailov
    • 1
  1. 1.Department of PhysicsMoscow State UniversityMoscowUSSR

Personalised recommendations