Photolabeling of the Enzymes of the 2-5A Synthetase/RNase L/p68 Kinase Antiviral Systems with Azido Probes

  • R. J. Suhadolnik
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 14)


This review describes approaches to the photoaffinity labeling of 2′,5′-oligoadenylate (2-5A) synthetase, RNase L, and p68 kinase employing azido probes with photolabile groups on carbon-2 or carbon-8 of adenine or inosine nucleotides. The covalent cross-linking of 2- or 8-azidoATP to 2-5A synthetase, 2- and 8-azido analogs of 2-5A to RNase L, and azido dsRNAs to 2-5A synthetase and p68 kinase is described. In addition, the newly discovered role of the 2-5A molecule as an inhibitor of HIV-l reverse transcriptase (RT) is discussed.


Oligomer Interferon Fructose Adenine Pyrimidine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albini A, Bettinetti G, Minioli G (1991) Chemistry of nitrenes generated by the photocleavage of both azides and a five-membered heterocycle. J Am Chem Soc 113:6928–6934.CrossRefGoogle Scholar
  2. Benech P, Mory Y, Revel M, Chebath J (1985) Structure of two forms of the interferon-indueed(2′-5′) oligo A synthetase of human cells based on cDNAs and gene sequences. EMBO J 4: 2249–2256.PubMedGoogle Scholar
  3. Brown GE, Lebleu B, Kawakita M, Shaila S, Sen GC, Lengyel P (1976) Increased endonuclease activity in an extract from mouse Ehrlich ascites tumor cells which had been treated with a partially purified interferon preparation: dependence on dsRNA. Biochem Biophys Res Commun 69:114–122.PubMedCrossRefGoogle Scholar
  4. Charubala R, Pfleiderer W, Sobol RW, Li SW, Suhadolnik RJ (1989) Chemical synthesis of adenylyl-(2′ → 5′)-adenylyl (2′ → 5′)-8-azidoadenosine, and activation and photoaffinity labelling of RNase L by [32P]p5′A2′p5′A2′p5′N3 8A. Helv Chim Acta 72:1354–1361.CrossRefGoogle Scholar
  5. Clemens MJ, Williams BRG (1978) Inhibition of protein synthesis by pppA2′p5′A2′p5′A: a novel oligonucleotide synthesized by interferon-treated L cell extracts. Cell 13:565–572.PubMedCrossRefGoogle Scholar
  6. Doetsch P, Wu JM, Sawada Y, Suhadolnik RJ (1981) Synthesis and characterization of (2′-5′) ppp3′dA(p3′dA)n, an analogue of (2′-5′) pppA (pA)n. Nature 291:355–358.PubMedCrossRefGoogle Scholar
  7. Edery I, Petryshyn R, Sonenberg N (1989) Activation of double-stranded RNA-dependent kinase (dsl) by the TAR region of HIV-1 mRNA: a novel translation control mechanism. Cell 56: 303–312.PubMedCrossRefGoogle Scholar
  8. Eppstein DA, Van Der Pas MA, Schryver BB, Sawai H, Lesiak K, Imai J, Torrence PF (1985) Cordycepin analogs of ppp5′A2′p5′A2′p5′A (2-5A) inhibit protein synthesis through activation of the 2-5A-dependent endonuclease, J Biol Chem 260:3666–3671.PubMedGoogle Scholar
  9. Etienne-Smekens M, Vandenbussche P, Content J, Dumont JE (1983) (2′-5′) Oligoadenylate in rat liver: modulation after partial hepatectomy. Proc Natl Acad Sci USA 80:4609–4613.PubMedCrossRefGoogle Scholar
  10. Ferbus D, Justesen J, Besan F, Thang MN (1981) The 2′5′ oligoadenylate synthetase has a multifunctional 2′5′ nucleotidyl-transferase activity. Biochem Biophys Res Commun 100: 847–856.PubMedCrossRefGoogle Scholar
  11. Ferbus D, Justesen J, Bertrand H, Thang MN (1984) 2′5′ Oligoadenylate synthetase in the maturation of rabbit reticulocytes. Mol Cell Biochem 62:51–55.PubMedCrossRefGoogle Scholar
  12. Floyd-Smith G, Yoshi O, Lengyel P (1982) Interferon action: covalent linkage of (2′-5′) pppApApA (32P) pCp to (2′-5′) (A)n-dependent ribonucleases in cell extracts by ultraviolet irradiation. J Biol Chem 257:8584–8587.PubMedGoogle Scholar
  13. Garin J, Boulay F, Issartel JP, Lunardy J, Vignais PV (1986) Identification of amino acid residues phosolabeled with 2-azido [α-32P] adenosine diphosphate in theβ subunit of beef heart mitochondrial F1-ATPase. Biochemistry 25:4431–4437.PubMedCrossRefGoogle Scholar
  14. Ghosh SK, Kusari J, Bandyopadhyay SK, Samanta H, Kumar R, Sen GC (1991) Cloning, sequencing, and expression of two murine 2′-5′-oligoadenylate synthetases. Structure-function relationships. J Biol Chem 266:15293–15299.PubMedGoogle Scholar
  15. Gunnery S, Green SR, Mathews MB (1992) Tat-responsive region RNA of human immunodeficiency virus type 1 stimulates protein synthesis in vivo and in vitro: relationship between structure and function. Proc Natl Acad Sci USA 89:11557–11561.PubMedCrossRefGoogle Scholar
  16. Hovanessian AG (1991) Interferon-induced and double-staranded RNA-activated enzymes: a specific protein kinase and 2′,5′-oligoadenylate synthetases. J Interferon Res 11:199–205.PubMedCrossRefGoogle Scholar
  17. Hovanessian AG, Kerr IM (1979) The (2′5′) oligoadenylate pppA2′p5′A2′p5′A synthetase and protein kinase(s) from interferon-treated cells. Eur J Biochem 93: 515–526.PubMedCrossRefGoogle Scholar
  18. Hovanessian AG, Wood JN (1980) Anticellular and antiviral effects of ppA(2′p5′A)n, Virology 101: 81–90PubMedCrossRefGoogle Scholar
  19. Hovanessian AG, Wood JN, Meurs E, Montagnier L (1979) Increased nuclease activity in cells treated with pppA2′p5′A2′p5′A. Proc Natl aed Sci USA 76: 3261–3265.CrossRefGoogle Scholar
  20. Hughes BG, Srivastava PC, Muse DD, Robins RK (1983) 2′,5′-Oligoadenylates and related 2′,5′-oligonucleotide analogues. 1. Substrate specificity of the interferon-induced murine 2′,5′-oligoadenylate synthetase and enzymatic synthesis of oligomers. Biochemistry 22:2116–2126.PubMedCrossRefGoogle Scholar
  21. Jacobsen H, Krause D, Friedman RM, Silverman RH (1983) Induction of ppp (A2′ p)n-dependent RNase in murine JLS-V9R cells during growth inhibition. Proc Natl Acad Sci USA 80: 4954–4858.PubMedCrossRefGoogle Scholar
  22. Julin DA, Lehman IR (1987) Photoaffinity labeling of the recBCD enzyme of Escherichia colt with 8-azidoadenosine 5′-triphosphate. J Biol Chem 262: 9044–9051.PubMedGoogle Scholar
  23. Justesen J, Ferbus D, Thang MN (1980) Elongation mechanism and substrate specificity of 2′5′ oligoadenylate synthetase. Ann N Y Acad Sci 350:510–521.CrossRefGoogle Scholar
  24. Kariko K, Sobol RW, Suhadolnik L, Li SW, Reichenbach NL Suhadolnik RJ, Charubala R, Pfleiderer W (1987a) Phosphorothioate analogues of 2′, 5′-oligoadenylate. Enzymatically synthesized 2′,5′-phosphorothioate dimer and trimer: unequivocal structural assignment and activation of 2′,5′-oligoadenylate-dependent endoribonuclease. Biochemistry 26:7127–7135.PubMedCrossRefGoogle Scholar
  25. Kariko K, Li SW, Sobol RW, Suhadolnik RJ, Charubala R, Pfleiderer R (1987b) Phosphorothioate analogues of 2′,5′-oligoadenylate. Activation of 2′,5′-oligoadenylate-dependent endoribonuclease by 2′, ′-phosphorothioate cores and 5′-monophosphates. Biochemistry 26:7136–7142.PubMedCrossRefGoogle Scholar
  26. Katze MG, Agy MB (1990) Regulation of viral and cellular RNA turnover in cells infected by eukaryotic viruses including HIV-1. Enzyme 44:332–346.PubMedGoogle Scholar
  27. Katze MG, Wambach M, Wong M-L, Garfmkel M, Meura E, Chong K, Williams BRG, Hovanes-sian AG, Barber GN (1991) Functional expression and RNA binding analysis of interferon-induced, dsRNA activated 68,000 Mr protein kinase in a cell-free system. Mol Cell Biol 11:5497–5505.PubMedGoogle Scholar
  28. Kerr IM, Stark GR (1992) The antiviral effects of the interferons and their inhibition. J Interferon Res 12:237–240.PubMedCrossRefGoogle Scholar
  29. Koromilas AE, Roy S, Barber GN, Katze MG, Sonenberg N (1992) Malignant transformation by a mutant of the IFN-inducible dsRNA-dependent protein kinase. Science 257:1685–1689.PubMedCrossRefGoogle Scholar
  30. Krause D, Silverman RH (1993) Tissue-related and species-specific differences in the 2-5A oligomer size requirement for activation of 2-5A-dependent RNase. J Interferon Res 13:13–16.PubMedCrossRefGoogle Scholar
  31. Krause D, Silverman RH, Jacobsen H, Leisy SA, Dieffenbach CW, Friedman RM (1985) Regulation of ppp (A2′p)n)A-dependent RNase levels during interferon treatment and cell differentiation. Eur J Biochem 146: 611–618.PubMedCrossRefGoogle Scholar
  32. Kumar A, Kim H-R, Sobol RW, Becerra SP, Lee B-J, Hatfield DL, Suhadolnik RJ, Wilson SH (1993) Mapping of nucleic acid binding in proteolytic bomdins of HIV-1 reverse transcriptase. Biochemistry (in press).Google Scholar
  33. Lebleu B, Sen GC, Shaila S, Carer B, Lengyel P (1976) Interferon, dsRNA and protein phosphoryla-tion. Proc Natl Acad Sci USA 73:335–341.CrossRefGoogle Scholar
  34. Lee C, Suhadolnik RJ (1985) 2′,5′-Oligoadenylates chiral at phosphorus: enzymatic synthesis, properties, and biological activities of 2′,5′-phosphorothioate trimer and tetramer analogues synthesized form (Sp)-ATPαS. Biochemistry 24:551–555.PubMedCrossRefGoogle Scholar
  35. Li SW, Moscow JJ, Suhadolnik RJ (1990) 8-Azido double-stranded RNA photoaffinity probes. Enzymatic synthesis, characterization, and biological properties of poly (1,8-azidoI)-poly (C) and poly (I, 8-azidoI)-poly (c12U) with 2′,5′-oligoadenylate synthetase and protein kinase. J Biol Chem 265:5470–5474.PubMedGoogle Scholar
  36. Marié I, Hovanessian AG (1992) The 69-kDa 2-5A synthetase is composed of two homologous and adjacent functional domains. J Biol Chem 267:9933–9939.PubMedGoogle Scholar
  37. Meurs EF, Galabru J, Barber GN, Katze MG, Hovanessian AG (1993) Tumor suppressor function of the interferon-induced double-stranded RNA-activated protein kinase. Proc Natl Acad Sci USA 90:232–236.PubMedCrossRefGoogle Scholar
  38. Mitina RL, Doonin SV, Dobrikov MI, Tabatadze DR, Levina AS, Lavrik OI (1992) Human immunodeficiency virus type 1 reverse transcriptase. Affinity labeling of the primer binding site. FEBS Lett 312:249–251.PubMedCrossRefGoogle Scholar
  39. Montefiori DC, Sobol RW, Li SW, Reichenbach NL, Suhadolnik RJ, Charubala R, Pfleiderer W, Modliszewski A, Robinson WE, Mitcell WM (1989) Phophorothioate and cordycepin analogues of 2′,5′-oligoadenylate: inhibition of human immunodeficiency virus type 1 reverse transcriptase and infection in vitro. Proc Natl Acad Sci USA 86:7191–7194.PubMedCrossRefGoogle Scholar
  40. Mordechai E, Chebath J, Suhadolnik RJ (1992) Characterization of human recombinant 40 kDA 2′, 5′-oligoadenylate synthetase activation by fructose 1,6-bisphosphate. J Interferon Res 12 (Suppl 1): S199 (Abstr 7.22).CrossRefGoogle Scholar
  41. Müller WEG, Weiler BE, Charubala R, Pfleiderer W, Leserman L, Sobol RW, Suhadolnik RJ, Schröder HC (1991) Cordycepin analogues of 2′,5′-oligoadenylate inhibit human immunodeficiency virus infection via inhibition of reverse transcriptase. Biochemistry 30:2027–2033.PubMedCrossRefGoogle Scholar
  42. Nyilas A, Vrang L, Drake A, Oberg B, Chattopadhyaya J (1986) The cordycepin analogue of 2, 5A and its threo isomer. Chemical synthesis, conformation and biological activity, Acta Chem Scand 800: 678–688.CrossRefGoogle Scholar
  43. Patel RC, Sen GC (1992) Identification of the double-stranded RNA-binding domain of the human interferon-inducible protein kinase. J Biol Chem 267:7671–7679.PubMedGoogle Scholar
  44. Pathak VK, Schindler D, Hershey JWB (1988) Generation of a mutant form of protein synthesis initation factor eIF-2 lacking the site of phosphorylation of eIF-2 kinases. Mol Cell Biol 8:993–995.PubMedGoogle Scholar
  45. Pestka S (ed) (1986) Interferons. Part C. Methods Enzymol 119Google Scholar
  46. Potter RL, Haley BE (1983) Photoaffinity labeling of nucleotide binding sites with 8-azidopurine analogs: techniques and applications. Methods Enzymol 91:613–633.PubMedCrossRefGoogle Scholar
  47. Roy S, Katze MG, Parkin NT, Edery I, Hovanessian AG, Sonenberg N (1990) Control of the interferon-induced 68-kilodalton protein kinase by the HIV-1 tat gene product. Science 247:1216–1219.PubMedCrossRefGoogle Scholar
  48. Roy S, Agy M, Hovanessian AG, Sonenbergn, Katze MG (1992) The integrity of the stem structure of human immunodeficiency virus type 1 tat-responsive sequence RNA is required for interaction with the interferon-induced 68,000-Mr protein kinase. J Virol 65:632–640.Google Scholar
  49. Rysiecki G, Gewert DR, Williams BRG (1989) Constitutive expression of a 2′,5′-oligoadenylate synthetase cDNA results in increased antiviral activity and growth suppression. J Interferon Res 9:649–657.PubMedCrossRefGoogle Scholar
  50. Salehzada T, Silhol M, Steff AM, Lebleu B, Bisbal C (1992) Multimeric structure of 2′-5′ oligoadenylate dependent RNase L. J Interferon Res 12 (Suppl 1): S84 (Abstr W8-2).Google Scholar
  51. Salvucci ME, Chavan AJ, Haley BE (1992) Identification of peptides from the adenine binding domains of ATP and AMP in adenylate kinase: isolation of photoaffinity-labeled peptides by metal chelate chromatography. Biochemistry 31:4479–4487.PubMedCrossRefGoogle Scholar
  52. Samuel CE (1979) Phosphorylation of protein synthesis initiation factor eIF-2 in interferon-treated human cells by a ribosome-associated kinase possessing site-specificity similar to hemin-regulated rabbit reticulocyte kinase. Proc Natl Acad Sci USA 76:600–604.PubMedCrossRefGoogle Scholar
  53. Samuel CE (1991) Antiviral actions of Interferon. Interferon-regulated cellular proteins and their surprisingly selective antiviral activities. Virology 183:1–11.PubMedCrossRefGoogle Scholar
  54. Schröder HC, Ugarkovic D, Wenger R, Okamoto T, Müller WEG (1990) Binding of tat protein to TAR region of human immunodeficiency virus type 1 blocks TAR-mediated activation of (2′-5′) oligoadenylate synthetase. AIDS Res Hum Retroviruses 6:659–672.PubMedCrossRefGoogle Scholar
  55. Schröder HC, Suhadolnik RJ, Pfleiderer W, Charubala R, Müller WEG (1992) (2′-5′) Oligoadenylate and intracellular immunity against retrovirus infection. Int J Biochem 24:55–63.PubMedCrossRefGoogle Scholar
  56. Sen GC, Lengyel P (1992) The interferon system. A bird’s eye view of its biochemistry. J Biol Chem 267:5017–5020.PubMedGoogle Scholar
  57. SenGupta DN, Silverman RH (1989) Activation of interferon-regulated, dsRNA-dependent enzymes by human immunodeficiency virus-1 leader RNA. Nucleic Acids Res 17:969–978.PubMedCrossRefGoogle Scholar
  58. Sobol RW, Suhadolnik RJ, Kumar A, Lee BJ, Hatfield DL, Wilson SH (1991) Localization of a polynucleotide binding region in the HIV-1 reverse transcriptase: implications for primer binding. Biochemistry 30:10623–10631.PubMedCrossRefGoogle Scholar
  59. Sobol RW, Fisher WL, Reichenbach NL, Kumar A, Beard WA, Wilson SH, Charubala R, Pfleiderer W, Suhadolnik RJ (1993) HIV-1 reverse transcriptase: inhibition by 2′,5′-oligoadenylates. Biochemistry (in press).Google Scholar
  60. Stark G, Dower WJ, Schimke RT, Brown RE, Kerr IM (1979) 2-5A synthetase: assay, distribution and variation with growth or hormone status. Nature 278:471–473.PubMedCrossRefGoogle Scholar
  61. Suhadolnik RJ, Flick MB, Mosca JD, Sawada Y, Doetsch PW, Vonderheid ED (1983a) 2′,5-Oligoadenylate synthetase from cutaneous T-cell lymphoma: biosynthesis, identification, quanti-tation, molecular size of the 2′,5-oligoadenylates, and inhibition of protein synthesis. Biochemistry 22:4153–4158.PubMedCrossRefGoogle Scholar
  62. Suhadolnik RJ, Devash Y, Reichenbach NL, Flick MB, Wu JM (1983b) Enzymatic synthesis of the 2′,5′-A4 tetramer analog, 2′,5′-ppp3′dA(p3′dA)3, by rabbit reticulocyte lysates: binding and activation of the 2′,5′-An dependent nuclease, hydrolysis of mRNA, and inhibition of protein synthesis. Biochem Biophys Res Commun 111:205–212.PubMedCrossRefGoogle Scholar
  63. Suhadolnik RJ, Lee C, Kariko K, Li SW (1987) Phosphorothioate analogues of 2′,5′-oligoadenylate. Enzymatic synthesis, properties, and biological activities of 2′,5′-phosphorothioates from aden-osine 5′-O-(2-thiotriphosphate) and adenosine 5′-O-(3-thiotriphosphate). Biochemistry 26: 7143–7149.PubMedCrossRefGoogle Scholar
  64. Suhadolnik RJ, Kariko K, Sobol RW, Li SW, Reichenbach NL, Haley BE (1988a) 2-and 8-Azido photoaffinity probes. 1. Enzymatic synthesis, characterization, and biological properties of 2-and 8-azido photoprobes of 2-5A and photolabeling of 2-5A binding proteins. Biochemistry 27:8840–8846.PubMedCrossRefGoogle Scholar
  65. Suhadolnik RJ, Li SW, Sobol RW, Haley BE (1988b) 2-and 8-Azido photoaffinity probes. 2. Studies on the binding process of 2-5A synthetase by photosensitive ATP analogues. Biochemistry 2: 8846–8851.CrossRefGoogle Scholar
  66. Thomis DC, Samuel CE (1992) Mechanism of interferon action: autoregulation of RNA-dependent Pl/eIF-2α protein kinase (PKR) expression in transfected mammalian cells. Proc Natl Acad Sci USA 89:10837–10841.PubMedCrossRefGoogle Scholar
  67. Thomis DC, Doohan JP, Samuel CE (1992) Mechanism of interferon action: cDNA structure, expression and regulation of the interferon-induced, RNA-dependent Pl/EIF-2α protein kinase from human cells. Virology 188:33–46.PubMedCrossRefGoogle Scholar
  68. Wells V, Mallucci L (1985) Expression of the 2-5A system during the cell cycle. Exp Cell Res 159: 27–36.PubMedCrossRefGoogle Scholar
  69. Williams BRG, Kerr Im, Gilbert CS, White CN, Ball LA (1978) Synthesis and breakdown of pppA2′p5′A2′p5′A and transient inhibition of protein synthesis in extracts from interferon-treated and control cells. Eur J Biochem 92:455–462.PubMedCrossRefGoogle Scholar
  70. Williams BRG, Golgher RR, Brown RE, Gilbert CS, Kerr IM (1979a) Natural occurrence of 2-5A in interferon-treated EMC virus-infected L cells. Nature 282: 582–586.PubMedCrossRefGoogle Scholar
  71. Williams BRG, Golgher RR, Kerr IM (1979b) Activation of a nuclease by A2′p5′A2′p5′A in intact cells. FEBS Lett 105: 47–52.PubMedCrossRefGoogle Scholar
  72. Witt PL, Marié I, Robert N, Irizarry A, Borden EC, Hovanessian AG (1993) Isoforms p69 and p100 of 2′,5-oligoadenylate synthetase induced differentially by interferons in vivo and in vitro. J Interferon Res 13:17–23.PubMedCrossRefGoogle Scholar
  73. Woody AYM, Evans RK, Woody RW (1988) Characterization of a photoaffinity analog of UTP, 5-azido-UTP, for analysis of the substrate binding site on E. coli RNA polymerase. Biochem Biophys Res Commum 150: 917–924.CrossRefGoogle Scholar
  74. Wu JM, Eslami B (1983) Synthesis and function of (2′-5′) An: inhibition of (2′-5′) An synthetase by heparin and the use of heparin-agarose for partial purification of (2′-5′)An synthetase from rabbit reticulocyte lysates. Biochem Int 6: 207–216.PubMedGoogle Scholar
  75. Zhang GY, Beltchev B, Fournier A, Zhang YH, Malassiné A, Bisbal C, Ehresmann B, Ehreshmann C, Darlix JL, Thang MN (1993) High levels of 2′,5′-oligoadenylate synthetase and 2′,5′-oligoadenylate-dependent endonuclease in human trophoblast. AIDS Res Huma Retroviruses 9: 189–196.CrossRefGoogle Scholar
  76. Zhou A, Hassei BA, Silverman RH (1993) Expression cloning of 2-5A-dependent RNase: a uniquely regulated mediator of interferon action. Cell 72:753–765.PubMedCrossRefGoogle Scholar
  77. Zilberstein A, Federman P, Shulman L, Revel M (1976) Specific phosphorylation in vitro of a protein associated with ribosomes of interferon-treated mouse L cells. FEBS Lett 68:119–124.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • R. J. Suhadolnik
    • 1
  1. 1.Department of BiochemistryTemple University School of MedicinePhiladelphiaUSA

Personalised recommendations