Advertisement

Photolabeling of the Enzymes of the 2-5A Synthetase/RNase L/p68 Kinase Antiviral Systems with Azido Probes

  • R. J. Suhadolnik
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 14)

Abstract

This review describes approaches to the photoaffinity labeling of 2′,5′-oligoadenylate (2-5A) synthetase, RNase L, and p68 kinase employing azido probes with photolabile groups on carbon-2 or carbon-8 of adenine or inosine nucleotides. The covalent cross-linking of 2- or 8-azidoATP to 2-5A synthetase, 2- and 8-azido analogs of 2-5A to RNase L, and azido dsRNAs to 2-5A synthetase and p68 kinase is described. In addition, the newly discovered role of the 2-5A molecule as an inhibitor of HIV-l reverse transcriptase (RT) is discussed.

Keywords

Human Immunodeficiency Virus Type Nucleotide Binding Site Azido Group Rabbit Reticulocyte Lysate Photoaffinity Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albini A, Bettinetti G, Minioli G (1991) Chemistry of nitrenes generated by the photocleavage of both azides and a five-membered heterocycle. J Am Chem Soc 113:6928–6934.CrossRefGoogle Scholar
  2. Benech P, Mory Y, Revel M, Chebath J (1985) Structure of two forms of the interferon-indueed(2′-5′) oligo A synthetase of human cells based on cDNAs and gene sequences. EMBO J 4: 2249–2256.PubMedGoogle Scholar
  3. Brown GE, Lebleu B, Kawakita M, Shaila S, Sen GC, Lengyel P (1976) Increased endonuclease activity in an extract from mouse Ehrlich ascites tumor cells which had been treated with a partially purified interferon preparation: dependence on dsRNA. Biochem Biophys Res Commun 69:114–122.PubMedCrossRefGoogle Scholar
  4. Charubala R, Pfleiderer W, Sobol RW, Li SW, Suhadolnik RJ (1989) Chemical synthesis of adenylyl-(2′ → 5′)-adenylyl (2′ → 5′)-8-azidoadenosine, and activation and photoaffinity labelling of RNase L by [32P]p5′A2′p5′A2′p5′N3 8A. Helv Chim Acta 72:1354–1361.CrossRefGoogle Scholar
  5. Clemens MJ, Williams BRG (1978) Inhibition of protein synthesis by pppA2′p5′A2′p5′A: a novel oligonucleotide synthesized by interferon-treated L cell extracts. Cell 13:565–572.PubMedCrossRefGoogle Scholar
  6. Doetsch P, Wu JM, Sawada Y, Suhadolnik RJ (1981) Synthesis and characterization of (2′-5′) ppp3′dA(p3′dA)n, an analogue of (2′-5′) pppA (pA)n. Nature 291:355–358.PubMedCrossRefGoogle Scholar
  7. Edery I, Petryshyn R, Sonenberg N (1989) Activation of double-stranded RNA-dependent kinase (dsl) by the TAR region of HIV-1 mRNA: a novel translation control mechanism. Cell 56: 303–312.PubMedCrossRefGoogle Scholar
  8. Eppstein DA, Van Der Pas MA, Schryver BB, Sawai H, Lesiak K, Imai J, Torrence PF (1985) Cordycepin analogs of ppp5′A2′p5′A2′p5′A (2-5A) inhibit protein synthesis through activation of the 2-5A-dependent endonuclease, J Biol Chem 260:3666–3671.PubMedGoogle Scholar
  9. Etienne-Smekens M, Vandenbussche P, Content J, Dumont JE (1983) (2′-5′) Oligoadenylate in rat liver: modulation after partial hepatectomy. Proc Natl Acad Sci USA 80:4609–4613.PubMedCrossRefGoogle Scholar
  10. Ferbus D, Justesen J, Besan F, Thang MN (1981) The 2′5′ oligoadenylate synthetase has a multifunctional 2′5′ nucleotidyl-transferase activity. Biochem Biophys Res Commun 100: 847–856.PubMedCrossRefGoogle Scholar
  11. Ferbus D, Justesen J, Bertrand H, Thang MN (1984) 2′5′ Oligoadenylate synthetase in the maturation of rabbit reticulocytes. Mol Cell Biochem 62:51–55.PubMedCrossRefGoogle Scholar
  12. Floyd-Smith G, Yoshi O, Lengyel P (1982) Interferon action: covalent linkage of (2′-5′) pppApApA (32P) pCp to (2′-5′) (A)n-dependent ribonucleases in cell extracts by ultraviolet irradiation. J Biol Chem 257:8584–8587.PubMedGoogle Scholar
  13. Garin J, Boulay F, Issartel JP, Lunardy J, Vignais PV (1986) Identification of amino acid residues phosolabeled with 2-azido [α-32P] adenosine diphosphate in theβ subunit of beef heart mitochondrial F1-ATPase. Biochemistry 25:4431–4437.PubMedCrossRefGoogle Scholar
  14. Ghosh SK, Kusari J, Bandyopadhyay SK, Samanta H, Kumar R, Sen GC (1991) Cloning, sequencing, and expression of two murine 2′-5′-oligoadenylate synthetases. Structure-function relationships. J Biol Chem 266:15293–15299.PubMedGoogle Scholar
  15. Gunnery S, Green SR, Mathews MB (1992) Tat-responsive region RNA of human immunodeficiency virus type 1 stimulates protein synthesis in vivo and in vitro: relationship between structure and function. Proc Natl Acad Sci USA 89:11557–11561.PubMedCrossRefGoogle Scholar
  16. Hovanessian AG (1991) Interferon-induced and double-staranded RNA-activated enzymes: a specific protein kinase and 2′,5′-oligoadenylate synthetases. J Interferon Res 11:199–205.PubMedCrossRefGoogle Scholar
  17. Hovanessian AG, Kerr IM (1979) The (2′5′) oligoadenylate pppA2′p5′A2′p5′A synthetase and protein kinase(s) from interferon-treated cells. Eur J Biochem 93: 515–526.PubMedCrossRefGoogle Scholar
  18. Hovanessian AG, Wood JN (1980) Anticellular and antiviral effects of ppA(2′p5′A)n, Virology 101: 81–90PubMedCrossRefGoogle Scholar
  19. Hovanessian AG, Wood JN, Meurs E, Montagnier L (1979) Increased nuclease activity in cells treated with pppA2′p5′A2′p5′A. Proc Natl aed Sci USA 76: 3261–3265.CrossRefGoogle Scholar
  20. Hughes BG, Srivastava PC, Muse DD, Robins RK (1983) 2′,5′-Oligoadenylates and related 2′,5′-oligonucleotide analogues. 1. Substrate specificity of the interferon-induced murine 2′,5′-oligoadenylate synthetase and enzymatic synthesis of oligomers. Biochemistry 22:2116–2126.PubMedCrossRefGoogle Scholar
  21. Jacobsen H, Krause D, Friedman RM, Silverman RH (1983) Induction of ppp (A2′ p)n-dependent RNase in murine JLS-V9R cells during growth inhibition. Proc Natl Acad Sci USA 80: 4954–4858.PubMedCrossRefGoogle Scholar
  22. Julin DA, Lehman IR (1987) Photoaffinity labeling of the recBCD enzyme of Escherichia colt with 8-azidoadenosine 5′-triphosphate. J Biol Chem 262: 9044–9051.PubMedGoogle Scholar
  23. Justesen J, Ferbus D, Thang MN (1980) Elongation mechanism and substrate specificity of 2′5′ oligoadenylate synthetase. Ann N Y Acad Sci 350:510–521.CrossRefGoogle Scholar
  24. Kariko K, Sobol RW, Suhadolnik L, Li SW, Reichenbach NL Suhadolnik RJ, Charubala R, Pfleiderer W (1987a) Phosphorothioate analogues of 2′, 5′-oligoadenylate. Enzymatically synthesized 2′,5′-phosphorothioate dimer and trimer: unequivocal structural assignment and activation of 2′,5′-oligoadenylate-dependent endoribonuclease. Biochemistry 26:7127–7135.PubMedCrossRefGoogle Scholar
  25. Kariko K, Li SW, Sobol RW, Suhadolnik RJ, Charubala R, Pfleiderer R (1987b) Phosphorothioate analogues of 2′,5′-oligoadenylate. Activation of 2′,5′-oligoadenylate-dependent endoribonuclease by 2′, ′-phosphorothioate cores and 5′-monophosphates. Biochemistry 26:7136–7142.PubMedCrossRefGoogle Scholar
  26. Katze MG, Agy MB (1990) Regulation of viral and cellular RNA turnover in cells infected by eukaryotic viruses including HIV-1. Enzyme 44:332–346.PubMedGoogle Scholar
  27. Katze MG, Wambach M, Wong M-L, Garfmkel M, Meura E, Chong K, Williams BRG, Hovanes-sian AG, Barber GN (1991) Functional expression and RNA binding analysis of interferon-induced, dsRNA activated 68,000 Mr protein kinase in a cell-free system. Mol Cell Biol 11:5497–5505.PubMedGoogle Scholar
  28. Kerr IM, Stark GR (1992) The antiviral effects of the interferons and their inhibition. J Interferon Res 12:237–240.PubMedCrossRefGoogle Scholar
  29. Koromilas AE, Roy S, Barber GN, Katze MG, Sonenberg N (1992) Malignant transformation by a mutant of the IFN-inducible dsRNA-dependent protein kinase. Science 257:1685–1689.PubMedCrossRefGoogle Scholar
  30. Krause D, Silverman RH (1993) Tissue-related and species-specific differences in the 2-5A oligomer size requirement for activation of 2-5A-dependent RNase. J Interferon Res 13:13–16.PubMedCrossRefGoogle Scholar
  31. Krause D, Silverman RH, Jacobsen H, Leisy SA, Dieffenbach CW, Friedman RM (1985) Regulation of ppp (A2′p)n)A-dependent RNase levels during interferon treatment and cell differentiation. Eur J Biochem 146: 611–618.PubMedCrossRefGoogle Scholar
  32. Kumar A, Kim H-R, Sobol RW, Becerra SP, Lee B-J, Hatfield DL, Suhadolnik RJ, Wilson SH (1993) Mapping of nucleic acid binding in proteolytic bomdins of HIV-1 reverse transcriptase. Biochemistry (in press).Google Scholar
  33. Lebleu B, Sen GC, Shaila S, Carer B, Lengyel P (1976) Interferon, dsRNA and protein phosphoryla-tion. Proc Natl Acad Sci USA 73:335–341.CrossRefGoogle Scholar
  34. Lee C, Suhadolnik RJ (1985) 2′,5′-Oligoadenylates chiral at phosphorus: enzymatic synthesis, properties, and biological activities of 2′,5′-phosphorothioate trimer and tetramer analogues synthesized form (Sp)-ATPαS. Biochemistry 24:551–555.PubMedCrossRefGoogle Scholar
  35. Li SW, Moscow JJ, Suhadolnik RJ (1990) 8-Azido double-stranded RNA photoaffinity probes. Enzymatic synthesis, characterization, and biological properties of poly (1,8-azidoI)-poly (C) and poly (I, 8-azidoI)-poly (c12U) with 2′,5′-oligoadenylate synthetase and protein kinase. J Biol Chem 265:5470–5474.PubMedGoogle Scholar
  36. Marié I, Hovanessian AG (1992) The 69-kDa 2-5A synthetase is composed of two homologous and adjacent functional domains. J Biol Chem 267:9933–9939.PubMedGoogle Scholar
  37. Meurs EF, Galabru J, Barber GN, Katze MG, Hovanessian AG (1993) Tumor suppressor function of the interferon-induced double-stranded RNA-activated protein kinase. Proc Natl Acad Sci USA 90:232–236.PubMedCrossRefGoogle Scholar
  38. Mitina RL, Doonin SV, Dobrikov MI, Tabatadze DR, Levina AS, Lavrik OI (1992) Human immunodeficiency virus type 1 reverse transcriptase. Affinity labeling of the primer binding site. FEBS Lett 312:249–251.PubMedCrossRefGoogle Scholar
  39. Montefiori DC, Sobol RW, Li SW, Reichenbach NL, Suhadolnik RJ, Charubala R, Pfleiderer W, Modliszewski A, Robinson WE, Mitcell WM (1989) Phophorothioate and cordycepin analogues of 2′,5′-oligoadenylate: inhibition of human immunodeficiency virus type 1 reverse transcriptase and infection in vitro. Proc Natl Acad Sci USA 86:7191–7194.PubMedCrossRefGoogle Scholar
  40. Mordechai E, Chebath J, Suhadolnik RJ (1992) Characterization of human recombinant 40 kDA 2′, 5′-oligoadenylate synthetase activation by fructose 1,6-bisphosphate. J Interferon Res 12 (Suppl 1): S199 (Abstr 7.22).CrossRefGoogle Scholar
  41. Müller WEG, Weiler BE, Charubala R, Pfleiderer W, Leserman L, Sobol RW, Suhadolnik RJ, Schröder HC (1991) Cordycepin analogues of 2′,5′-oligoadenylate inhibit human immunodeficiency virus infection via inhibition of reverse transcriptase. Biochemistry 30:2027–2033.PubMedCrossRefGoogle Scholar
  42. Nyilas A, Vrang L, Drake A, Oberg B, Chattopadhyaya J (1986) The cordycepin analogue of 2, 5A and its threo isomer. Chemical synthesis, conformation and biological activity, Acta Chem Scand 800: 678–688.CrossRefGoogle Scholar
  43. Patel RC, Sen GC (1992) Identification of the double-stranded RNA-binding domain of the human interferon-inducible protein kinase. J Biol Chem 267:7671–7679.PubMedGoogle Scholar
  44. Pathak VK, Schindler D, Hershey JWB (1988) Generation of a mutant form of protein synthesis initation factor eIF-2 lacking the site of phosphorylation of eIF-2 kinases. Mol Cell Biol 8:993–995.PubMedGoogle Scholar
  45. Pestka S (ed) (1986) Interferons. Part C. Methods Enzymol 119Google Scholar
  46. Potter RL, Haley BE (1983) Photoaffinity labeling of nucleotide binding sites with 8-azidopurine analogs: techniques and applications. Methods Enzymol 91:613–633.PubMedCrossRefGoogle Scholar
  47. Roy S, Katze MG, Parkin NT, Edery I, Hovanessian AG, Sonenberg N (1990) Control of the interferon-induced 68-kilodalton protein kinase by the HIV-1 tat gene product. Science 247:1216–1219.PubMedCrossRefGoogle Scholar
  48. Roy S, Agy M, Hovanessian AG, Sonenbergn, Katze MG (1992) The integrity of the stem structure of human immunodeficiency virus type 1 tat-responsive sequence RNA is required for interaction with the interferon-induced 68,000-Mr protein kinase. J Virol 65:632–640.Google Scholar
  49. Rysiecki G, Gewert DR, Williams BRG (1989) Constitutive expression of a 2′,5′-oligoadenylate synthetase cDNA results in increased antiviral activity and growth suppression. J Interferon Res 9:649–657.PubMedCrossRefGoogle Scholar
  50. Salehzada T, Silhol M, Steff AM, Lebleu B, Bisbal C (1992) Multimeric structure of 2′-5′ oligoadenylate dependent RNase L. J Interferon Res 12 (Suppl 1): S84 (Abstr W8-2).Google Scholar
  51. Salvucci ME, Chavan AJ, Haley BE (1992) Identification of peptides from the adenine binding domains of ATP and AMP in adenylate kinase: isolation of photoaffinity-labeled peptides by metal chelate chromatography. Biochemistry 31:4479–4487.PubMedCrossRefGoogle Scholar
  52. Samuel CE (1979) Phosphorylation of protein synthesis initiation factor eIF-2 in interferon-treated human cells by a ribosome-associated kinase possessing site-specificity similar to hemin-regulated rabbit reticulocyte kinase. Proc Natl Acad Sci USA 76:600–604.PubMedCrossRefGoogle Scholar
  53. Samuel CE (1991) Antiviral actions of Interferon. Interferon-regulated cellular proteins and their surprisingly selective antiviral activities. Virology 183:1–11.PubMedCrossRefGoogle Scholar
  54. Schröder HC, Ugarkovic D, Wenger R, Okamoto T, Müller WEG (1990) Binding of tat protein to TAR region of human immunodeficiency virus type 1 blocks TAR-mediated activation of (2′-5′) oligoadenylate synthetase. AIDS Res Hum Retroviruses 6:659–672.PubMedCrossRefGoogle Scholar
  55. Schröder HC, Suhadolnik RJ, Pfleiderer W, Charubala R, Müller WEG (1992) (2′-5′) Oligoadenylate and intracellular immunity against retrovirus infection. Int J Biochem 24:55–63.PubMedCrossRefGoogle Scholar
  56. Sen GC, Lengyel P (1992) The interferon system. A bird’s eye view of its biochemistry. J Biol Chem 267:5017–5020.PubMedGoogle Scholar
  57. SenGupta DN, Silverman RH (1989) Activation of interferon-regulated, dsRNA-dependent enzymes by human immunodeficiency virus-1 leader RNA. Nucleic Acids Res 17:969–978.PubMedCrossRefGoogle Scholar
  58. Sobol RW, Suhadolnik RJ, Kumar A, Lee BJ, Hatfield DL, Wilson SH (1991) Localization of a polynucleotide binding region in the HIV-1 reverse transcriptase: implications for primer binding. Biochemistry 30:10623–10631.PubMedCrossRefGoogle Scholar
  59. Sobol RW, Fisher WL, Reichenbach NL, Kumar A, Beard WA, Wilson SH, Charubala R, Pfleiderer W, Suhadolnik RJ (1993) HIV-1 reverse transcriptase: inhibition by 2′,5′-oligoadenylates. Biochemistry (in press).Google Scholar
  60. Stark G, Dower WJ, Schimke RT, Brown RE, Kerr IM (1979) 2-5A synthetase: assay, distribution and variation with growth or hormone status. Nature 278:471–473.PubMedCrossRefGoogle Scholar
  61. Suhadolnik RJ, Flick MB, Mosca JD, Sawada Y, Doetsch PW, Vonderheid ED (1983a) 2′,5-Oligoadenylate synthetase from cutaneous T-cell lymphoma: biosynthesis, identification, quanti-tation, molecular size of the 2′,5-oligoadenylates, and inhibition of protein synthesis. Biochemistry 22:4153–4158.PubMedCrossRefGoogle Scholar
  62. Suhadolnik RJ, Devash Y, Reichenbach NL, Flick MB, Wu JM (1983b) Enzymatic synthesis of the 2′,5′-A4 tetramer analog, 2′,5′-ppp3′dA(p3′dA)3, by rabbit reticulocyte lysates: binding and activation of the 2′,5′-An dependent nuclease, hydrolysis of mRNA, and inhibition of protein synthesis. Biochem Biophys Res Commun 111:205–212.PubMedCrossRefGoogle Scholar
  63. Suhadolnik RJ, Lee C, Kariko K, Li SW (1987) Phosphorothioate analogues of 2′,5′-oligoadenylate. Enzymatic synthesis, properties, and biological activities of 2′,5′-phosphorothioates from aden-osine 5′-O-(2-thiotriphosphate) and adenosine 5′-O-(3-thiotriphosphate). Biochemistry 26: 7143–7149.PubMedCrossRefGoogle Scholar
  64. Suhadolnik RJ, Kariko K, Sobol RW, Li SW, Reichenbach NL, Haley BE (1988a) 2-and 8-Azido photoaffinity probes. 1. Enzymatic synthesis, characterization, and biological properties of 2-and 8-azido photoprobes of 2-5A and photolabeling of 2-5A binding proteins. Biochemistry 27:8840–8846.PubMedCrossRefGoogle Scholar
  65. Suhadolnik RJ, Li SW, Sobol RW, Haley BE (1988b) 2-and 8-Azido photoaffinity probes. 2. Studies on the binding process of 2-5A synthetase by photosensitive ATP analogues. Biochemistry 2: 8846–8851.CrossRefGoogle Scholar
  66. Thomis DC, Samuel CE (1992) Mechanism of interferon action: autoregulation of RNA-dependent Pl/eIF-2α protein kinase (PKR) expression in transfected mammalian cells. Proc Natl Acad Sci USA 89:10837–10841.PubMedCrossRefGoogle Scholar
  67. Thomis DC, Doohan JP, Samuel CE (1992) Mechanism of interferon action: cDNA structure, expression and regulation of the interferon-induced, RNA-dependent Pl/EIF-2α protein kinase from human cells. Virology 188:33–46.PubMedCrossRefGoogle Scholar
  68. Wells V, Mallucci L (1985) Expression of the 2-5A system during the cell cycle. Exp Cell Res 159: 27–36.PubMedCrossRefGoogle Scholar
  69. Williams BRG, Kerr Im, Gilbert CS, White CN, Ball LA (1978) Synthesis and breakdown of pppA2′p5′A2′p5′A and transient inhibition of protein synthesis in extracts from interferon-treated and control cells. Eur J Biochem 92:455–462.PubMedCrossRefGoogle Scholar
  70. Williams BRG, Golgher RR, Brown RE, Gilbert CS, Kerr IM (1979a) Natural occurrence of 2-5A in interferon-treated EMC virus-infected L cells. Nature 282: 582–586.PubMedCrossRefGoogle Scholar
  71. Williams BRG, Golgher RR, Kerr IM (1979b) Activation of a nuclease by A2′p5′A2′p5′A in intact cells. FEBS Lett 105: 47–52.PubMedCrossRefGoogle Scholar
  72. Witt PL, Marié I, Robert N, Irizarry A, Borden EC, Hovanessian AG (1993) Isoforms p69 and p100 of 2′,5-oligoadenylate synthetase induced differentially by interferons in vivo and in vitro. J Interferon Res 13:17–23.PubMedCrossRefGoogle Scholar
  73. Woody AYM, Evans RK, Woody RW (1988) Characterization of a photoaffinity analog of UTP, 5-azido-UTP, for analysis of the substrate binding site on E. coli RNA polymerase. Biochem Biophys Res Commum 150: 917–924.CrossRefGoogle Scholar
  74. Wu JM, Eslami B (1983) Synthesis and function of (2′-5′) An: inhibition of (2′-5′) An synthetase by heparin and the use of heparin-agarose for partial purification of (2′-5′)An synthetase from rabbit reticulocyte lysates. Biochem Int 6: 207–216.PubMedGoogle Scholar
  75. Zhang GY, Beltchev B, Fournier A, Zhang YH, Malassiné A, Bisbal C, Ehresmann B, Ehreshmann C, Darlix JL, Thang MN (1993) High levels of 2′,5′-oligoadenylate synthetase and 2′,5′-oligoadenylate-dependent endonuclease in human trophoblast. AIDS Res Huma Retroviruses 9: 189–196.CrossRefGoogle Scholar
  76. Zhou A, Hassei BA, Silverman RH (1993) Expression cloning of 2-5A-dependent RNase: a uniquely regulated mediator of interferon action. Cell 72:753–765.PubMedCrossRefGoogle Scholar
  77. Zilberstein A, Federman P, Shulman L, Revel M (1976) Specific phosphorylation in vitro of a protein associated with ribosomes of interferon-treated mouse L cells. FEBS Lett 68:119–124.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • R. J. Suhadolnik
    • 1
  1. 1.Department of BiochemistryTemple University School of MedicinePhiladelphiaUSA

Personalised recommendations