Skip to main content

Flood Tolerant and Flood Sensitive Plants Under Primary and Secondary Anoxia

  • Conference paper
Interacting Stresses on Plants in a Changing Climate

Part of the book series: NATO ASI Series ((ASII,volume 16))

Abstract

The elucidation of the mechanisms of plant adaptation to anaerobic environments and the causes of plant injury and death in oxygen-free conditions are two fundamental problems which have been studied extensively during the last 20 years. The high sensitivity of root cell ultrastructure to oxygen deficiency and facilitated oxygen transport from shoots to roots of flood-tolerant plants indicate that adaptation of plants to oxygen shortage in the rooting medium is achieved by the avoidance of anaerobiosis in root cells. The second main strategy is metabolic adaptation. This is realised at the molecular level in the total absence of oxygen. Both strategies are discussed using results obtained mostly from experiments with rice. In addition, the responses of flood-sensitive plants such as wheat, pea and maize under primary and secondary anoxia are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aleshin EP, Yakovlev BV, Gulak VJ, Kolesnikov GP (1971) The pathways of energy transfer in rice coleoptiles (in Russian). Doklady VASKHNIL No 4: 23–25

    Google Scholar 

  • Andreev VY, Generozova IP, Vartapetian BB (1991) Energy status and mitochondrial ultrastructure of excised pea root at anoxia and post-anoxia. Plant Physiology and Biochemistry 29: 171–176

    CAS  Google Scholar 

  • ApRees T, Jenkin LET, Smith AM, Wilson PM (1987) The metabolism of flood tolerant plants. In: Crawford RMM (ed) Plant life in aquatic and amphibious habitats. Blackwell Scientific Publications, Oxford, pp 227–238

    Google Scholar 

  • ApRees T, Wilson P (1984) Effects of reduced supply of oxygen on the metabolism of roots of Glyceria maxima and Pisum sativum. Zeitschrift Pflanzenphysiologie 114: 493–503

    CAS  Google Scholar 

  • Armstrong W (1979) Aeration in higher plants. In: Woolhouse CO (ed) Advances in botanical research. Academic Press, London, pp 226–332

    Google Scholar 

  • Armstrong W (1980) Root aeration in the wetland condition. In: Hook DD, Crawford RMM (eds) Plant life in anaerobic environments, 2nd printing. Ann Arbor Science, Michigan, pp 269–297

    Google Scholar 

  • Armstrong W, Beckett PM, Justin SHFW, Lythe S (1991) Modelling, and other aspects of root aeration by diffusion. In: Jackson MB, Davies DD, Lambers H (eds) Plant life under oxygen deprivation. SPB Academic Publishing, The Hague, pp 267–282

    Google Scholar 

  • Aspart L, Got A, Delseny M, Mocquot B, Pradet A (1983) Adaptation of ribonucleic acid metabolism to anoxia in rice embryos. Plant Physiology 72: 115–121

    Article  PubMed  CAS  Google Scholar 

  • Atwell BJ, ApRees T (1986) Distribution of protein synthesized by seedlings of Oryza sativa grown in anoxia. Journal of Plant Physiology 123: 401–408

    CAS  Google Scholar 

  • Chirkova TV, Khazova IV, Astafurova TP (1974) On the metabolic regulation of plant adaptation to transient anaerobiosis. Soviet Plant Physiology 21: 102–107

    CAS  Google Scholar 

  • Costes C, Vartapetian BB (1978) Plants grown in vacuum: the ultrastructure and functions of mitochondria. Plant Science Letters 11: 115–119

    Article  CAS  Google Scholar 

  • Crawford RMM (1980) Metabolic adaptations to anoxia. In: Hook DD, Crawford RMM (eds) Plant life in anaerobic environments. 2nd printing. Ann Arbor Science, Michigan, pp 119–136

    Google Scholar 

  • Crawford RMM, Vartapetian BB (1984) Effect of ethanol and anoxia on ultrastructure of plant mitochondria (in Russian). Doklady Akademii nauk SSSR 275: 1279–1280

    CAS  Google Scholar 

  • Drew MC, Jackson MB, Giffard SC, Campbell R (1981) Inhibition by silver ions of gas space (aerenchyma) formation in adventitious roots of Zea mays L. subjected to exogenous ethylene or to oxygen deficiency. Planta 153: 217–224

    Article  CAS  Google Scholar 

  • Jackson MB, Fenning TM, Drew MC, Saker LR (1985) Stimulation of ethylene production and gas-space (aerenchyma) formation in adventitious roots of Zea mays L. by small partial pressures of oxygen. Planta 165: 486–492

    Article  CAS  Google Scholar 

  • Jackson MB, Herman B, Goodenough A (1982) An examination of the importance of ethanol in causing injury to flooded plants. Plant, Cell and Environment 5: 163–172

    CAS  Google Scholar 

  • Kennedy RA, Rumpho ME, VanderZee DV (1983) Germination of Echinocloa crus-galli (L.) (barnyard grass) seeds under anaerobic conditions. Plant Physiology 72: 787–794

    Article  PubMed  CAS  Google Scholar 

  • Konings H (1982) Ethylene-promoted formation of aerenchyma in seedling roots of Zea mays L. under aerated and non-aerated conditions. Physiologia Plantarum 54: 119–124

    Article  CAS  Google Scholar 

  • Maslova IP, Tchernyadeva IF, Vartapetian BB (1975) Soluble proteins and alcohol dehydrogenase of rice seedlings in anoxia. In: Twelfth International Botanical Congress Abstracts Vol. 2. Nauka, Leningrad, p 365

    Google Scholar 

  • McManmon M, Crawford RMM (1971) A metabolic theory of flooding tolerance: The significance of enzyme distribution and behaviour. The New Phytologist 70: 299–306

    Article  CAS  Google Scholar 

  • Mocquot B, Pradet A, Litvak S (1977) DNA synthesis and anoxia in rice coleoptiles. Plant Science Letters 9: 365–371

    Article  CAS  Google Scholar 

  • Mocquot B, Prat Ch, Mouches C, Pradet A (1981) Effect of anoxia on energy charge and protein synthesis in rice embryos. Journal of Plant Physiology 68: 636–640

    Article  CAS  Google Scholar 

  • Neue HU, Becker-Heidmann P, Seharpenseel HW (1990) Organic matter dynamics, soil properties, and cultural practices in rice lands and their relationship to methane production. In: Bouwman AF (ed) Soils and the greenhouse effect, John Wiley and Sons, Chichester, pp 457–466

    Google Scholar 

  • Neunylov BA (1979) Biological basis for rice production in the Far East (in Russian). Journal of General Biology 40: 485–496

    CAS  Google Scholar 

  • Nuritdinov N, Vartapetian BB (1981) A quantitative assay of O2 transport in cotton plants at different temperatures. Physiologie Vegetale 19: 211–217

    Google Scholar 

  • Pradet A, Prat C (1976) Metabolisme energetique au cours de la germination du Riz en anoxie. In: Jacques R (ed) Etudes de biologie vegetale CNRS, Paris, pp 561–574

    Google Scholar 

  • Raskin I, Kende H (1985) Mechanism of aeration in rice. Science 228: 327–329

    Article  PubMed  CAS  Google Scholar 

  • Saglio PH, Raymond P, Pradet A (1980) Metabolic activity and energy charge of excised maize root tips under anoxia. Plant Physiology 66: 1053–1057

    Article  PubMed  CAS  Google Scholar 

  • Soldatenkov SV, Chirkova TV (1963) The role of leaves in root respiration under anaerobic conditions (in Russian). Soviet Plant Physiology 10: 452–458

    Google Scholar 

  • Vartapetian BB (1973) Aeration of roots in relation to molecular oxygen transport in plants. In: Slater RO (ed) Proceedings of the Uppsala Symposium 1970, UNESCO, Paris, pp 259–265

    Google Scholar 

  • Vartapetian BB (1978) Structure and function of mitochondria from rice coleoptiles grown under strictly anaerobic conditions. In: Ducet G, Lance C (eds) Plant mitochondria. Elsevier, Amsterdam, pp 411–418

    Google Scholar 

  • Vartapetian BB (1982) Pasteur effect visualization by electron microscopy. Naturwissenschaften 69: 99

    Article  PubMed  CAS  Google Scholar 

  • Vartapetian BB (1991) Flood sensitive plants under primary and secondary anoxia: ultrastructural and metabolic responses. In: Jackson MB, Davies DD, Lambers H (eds) Plant life under oxygen deprivation, SPB Academic Publishing, The Hague, pp 201–216

    Google Scholar 

  • Vartapetian BB, Agapova LP, Averianov AA, Veselovsky VA (1974a) New approach to study of oxygen transport in plants using a chemiluminescent method. Nature (London) 249: 269

    Article  CAS  Google Scholar 

  • Vartapetian BB, Andreeva IN (1986) Mitochondrial ultrastructure of three hygrophyte species at anoxia and in anoxic glucose-supplemented medium. Journal of Experimental Botany 37: 685–692

    Article  Google Scholar 

  • Vartapetian BB, Andreeva IN, Kursanov AL (1974b) Appearance of unusual mitochondria in rice coleoptiles at conditions of secondary anoxia. Nature (London) 248: 258–259

    Article  Google Scholar 

  • Vartapetian BB, Andreeva IN, Kursanov AL (1974c) Erratum. Nature (London) 250: 84

    Google Scholar 

  • Vartapetian BB, Andreeva IN, Kozlova GI (1976) The resistance to anoxia and the mitochondrial fine structure of rice seedlings. Protoplasma 88: 215–224

    Article  Google Scholar 

  • Vartapetian BB, Andreeva IN, Kozlova GI, Agapova LP (1977) Mitochondrial ultrastructure in roots of mesophyte and hydrophyte at anoxia and after glucose feeding. Protoplasma 91: 243–256

    Article  Google Scholar 

  • Vartapetian BB, Andreeva IN, Nuritdinov N (1980) Plant cells under oxygen stress. In: Hook DD, Crawford RMM (eds) Plant life in anaerobic environments. 2nd printing. Ann Arbor Science, Michigan, pp 13–88

    Google Scholar 

  • Vartapetian BB, Mazliak P, Lance C (1978) Lipid biosynthesis in rice coleoptiles grown in the presence or in the absence of oxygen. Plant Science Letters 13: 321–328

    Article  CAS  Google Scholar 

  • Vartapetian BB, Nuritdinov N (1976) Molecular oxygen transport in plants. Naturwissenschaften 63: 246

    Article  Google Scholar 

  • Vartapetian BB, Snkhchian HH, Generozova IP (1987). In: Crawford RMM (ed) Plant life in aquatic and amphibious habitats. Blackwell Scientific Publications, Oxford, pp 205–223

    Google Scholar 

  • Vartapetian BB, Zakhmilova NA (1990) Ultrastructure of wheat seedling mitochondria under anoxia and post-anoxia. Protoplasma 156: 39–44

    Article  Google Scholar 

  • Webb T, Armstrong W (1983) The effects of anoxia and carbohydrates on the growth viability of rice, pea and pumpkin roots. Journal of Experimental Botany 34: 579–603

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vartapetian, B.B. (1993). Flood Tolerant and Flood Sensitive Plants Under Primary and Secondary Anoxia. In: Jackson, M.B., Black, C.R. (eds) Interacting Stresses on Plants in a Changing Climate. NATO ASI Series, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78533-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78533-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78535-1

  • Online ISBN: 978-3-642-78533-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics