Electron, Acoustic, and Tunneling Microscopy of Minerals

  • H.-R. Wenk
  • A. C. McLaren
  • G. M. Pennock
  • V. A. Drits
  • H. R. Wenk
  • U. Beller
  • A. V. Ermakov
  • S. V. Titkov
Part of the Advanced Mineralogy book series (AM, volume 2)


There are basically two distinct types of electron microscope. The transmission electron microscope (TEM) is the analog of the transmission hght microscope and provides information about the internal structure of a specimen which is thin enough to be transparent to the electron beam. The scanning electron microscope (SEM) provides information about the surface structure of the specimen. Nowadays, both types of microscope are commonly equipped with an energy dispersive X-ray detector for measuring the intensities of the characteristic X-rays which are emitted by the specimen and hence its chemical composition.


Scanning Tunneling Microscopy Burger Vector Slip Plane Twin Boundary Edge Dislocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn JH, Peacor DR (1986) Transmission and analytical electron microscopy of the smectite- to-illite transition. Clays Clay Mineral 34: 165–170CrossRefGoogle Scholar
  2. Amehnckx S, Van Landuyt J (1976) Contrast effects at planar interfaces. In: Wenk HR (ed) Electron microscopy in mineralogy. Springer, Berlin Heidelberg New York, pp 68–112CrossRefGoogle Scholar
  3. Barber DJ (1987) Dislocations and microstructures. In: Wenk HR (ed) Preferred orientation in deformed metals and rocks: an introduction to modern texture analysis. Academic Press, Orlando pp 148–182Google Scholar
  4. Buseck PR (Ed) (1993) Minerals and reactions at the atomic scale: Transmission electron microscopy. Rev Mineral 27Google Scholar
  5. Buseck P, Cowley J Eyring L (eds) (1988) High resolution transmission electron microscopy and associated techniques. Oxford Univ Press, New York 645 ppGoogle Scholar
  6. Downing KH, Hu Meisheng, Wenk HR, O’Keefe MA (1990). Resolution of oxygen with the TEM: 3d-electron crystallography of staurolite. Nature 348: 525–528CrossRefGoogle Scholar
  7. Drits VA (1986) Electron diffraction and high resolution electron microscopy of mineral structures. Springer, Berlin Heidelberg New YorkGoogle Scholar
  8. Glaeser RM (1985) Electron crystalography of biological macromolecules. Annu Rev Phys Chem 36: 243–275CrossRefGoogle Scholar
  9. Goldstein JI, Newbury DE, Echlin P (1981) Scanning electron microscopy and X-ray microanalysis. Plenum Press, New YorkCrossRefGoogle Scholar
  10. Hull O (1965) Introduction to dislocations. Pergamon Press, OxfordGoogle Scholar
  11. Hurle DTJ (1962) Mechanisms of growth of metal single crystals from the melt. Pergamon Press, New YorkGoogle Scholar
  12. Loretto MH (1984) Electron beam analysis of materials. Chapman and Hall, LondonCrossRefGoogle Scholar
  13. McLaren AC (1991) Transmission electron microscopy of minerals and rocks. Cambridge Univ Press, New YorkCrossRefGoogle Scholar
  14. Schwarzer RA, Weiland H (1988) Texture analysis by the measurement of individual grain orientations — electron microscopical methods and application on dual-phase steel. Text Microstruct 8/9: 551–577CrossRefGoogle Scholar
  15. Spence JCH, Tafto J (1983) ALCHEMI: a new technique for locating atoms in small crystals. J Microsc 130: 147–154CrossRefGoogle Scholar
  16. Steeds JW (1979) Convergent beam electron diffraction. In: Hren JJ, Goldstein JI, Joy DC (eds) Introduction to analytical electron microscopy. Plenum Press, New York, pp 387–422Google Scholar
  17. Taylor GI (1934) Plastic deformation in crystals. Proc R Soc Lond 145: 362–404CrossRefGoogle Scholar
  18. Thomas G, Goringe MJ (1979) Transmission electron microscopy of materials. Wiley, New YorkGoogle Scholar
  19. Von Heimendahl M (1980) Electron microscopy of materials, an introduction. Academic Press, New YorkGoogle Scholar
  20. Wenk H-R (ed) (1976) Electron microscopy in mineralogy. Springer, Berlin Heidelberg New YorkGoogle Scholar
  21. Wenk HR (1979) Elektronia Mikroskopia B Mineralogii. MIR, Moscow, 541 pp (in Russian)Google Scholar
  22. White JC (ed) (1985) Short course in applications of electron microscopy in the Earth Sciences. Mineral Assoc Can, FrederictonGoogle Scholar
  23. Barber DJ, Wenk H-R (1991) Dauphiné twinning in deformed quartzites: implications of an in situ TEM study of the OL-ß phase transformation. Phys Chem Mineral 17: 492–502CrossRefGoogle Scholar
  24. Barber DJ, Heard HC, Wenk H-R (1981) Deformation of dolomite single crystals from 200–800 °C. Phys Chem Mineral 7: 271–286CrossRefGoogle Scholar
  25. Champness PE, Lorimer GW (1971) An electron microscopic study of a lunar pyroxene. Contrib Mineral Petrol 33: 171–183CrossRefGoogle Scholar
  26. Champness PE, Lorimer GW (1976) Exsolution in silicates. In: Wenk HR, Champness PE, Christie JH (eds) Electron microscopy in mineralogy. Springer, Berhn Heidelberg New York, pp 174–204Google Scholar
  27. Jiang WT, Peacor DR, Merriman RJ, Roberts B (1990) Transmission and analytical electron microscopic study of mixed-layer illite-smectite formed as an apparent replacement product of diagenetic illite. Clays Clay Mineral 38: 449–468CrossRefGoogle Scholar
  28. McLaren AC (1984) Transmission electron microscope investigations of the microstructures of microlines. In: Brown WL (ed) Feldspars and Feldspathoids. Nato ASI Series, Reidel, pp 373–409Google Scholar
  29. Meisheng H, Wenk H-R, Sinitsyna D (1992) Microstructures in natural perovskites. Am Mineral 77 (in press)Google Scholar
  30. Van Tendeloo G, Wenk H-R, Gronsky R (1985) Modulated structures in calcian dolomite: a study by electron microscopy. Phys Chem Mineral 12: 333–341CrossRefGoogle Scholar
  31. Wenk H-R, Nakajima Y (1980) Formation and decomposition of APB-structures in calcic plagioclase. Phys Chem Mineral 6: 169–186CrossRefGoogle Scholar
  32. Wenk H-R, Barber DJ, Reeder RJ (1983) Microstructures in carbonates. In: Reeder RJ (ed) Carbonates: mineralogy and chemistry. Reviews in mineralogy. Min Soc Am 11: 301–361Google Scholar
  33. Wenk H-R, Meisheng H, Lindsey T, Morris W (1991) Superstructures in ankerite and calcite. Phys Chem Mineral 17: 527–539CrossRefGoogle Scholar
  34. Addison RC, Somekh M, Rowe JM, Briggs GAD (1987) Characterization of thin-film adhesion with the scanning acoustic microscope. SPIE 768: 275–284CrossRefGoogle Scholar
  35. Briggs A (1985) An introduction to scanning acoustic microscopy (Microscopy handbooks 12). Oxford Univ Press, OxfordGoogle Scholar
  36. Holhs RL, Hammer R (1980) Defect detection for micro-electronics by acoustic microscopy. In: Ash EA (ed) Scanned image microscopy. Academic press, pp 155–164Google Scholar
  37. Kushibiki J, Maehara H, Chubachi N (1982) Measurement of acoustic properties for thin films. J Appl Phys 53: 5509–5513CrossRefGoogle Scholar
  38. Nikoonhad M (1984) Recent advances in high resolution acoustic microscopy. Contemp Phys 25: 129–158CrossRefGoogle Scholar
  39. Lemons RA, Quate CF (1979) Acoustic microscopy. In: Mason WP, Thurston RN (eds) Physical acoustics. Academic Press, London, pp 1–92Google Scholar
  40. Quate CF, Atalar A, Wickramasinghe HK (1979) Acoustic microscopy with mechanical scanning — a review. Proc IEEE 67: 1092–1114CrossRefGoogle Scholar
  41. Baratoff A, Binning G, Fuchs H, Salvan F, Stoll E (1986) Tunnehng microscopy and spectroscopy of semiconductor surfaces and interfaces. Surf Sci 168: 734–743CrossRefGoogle Scholar
  42. Binning G, Rohrer H (1986) Scanning tunneling microscopy, IBM J Res Dev 30: 355–369Google Scholar
  43. Binning G, Rohrer H, Gerber Ch, Weibel E (1982) Surface studies by scanning tunnehng microscopy. Phys Rev Lett 49: 57–61CrossRefGoogle Scholar
  44. Binning G, Quate CF, Gerber Ch (1986) Atomic force microscope. Phys Rev Lett 56: 930–933CrossRefGoogle Scholar
  45. Drake B, Prater CR, Weisenhorn AL, Gould SAC, Albrecht TR, Quate CF, Cannell DS, Hansma HG, Hansma PK (1989) Imaging crystals, polymers, and processes in weater with the atomic force microscope. Science 243: 1586–1589CrossRefGoogle Scholar
  46. Eggleston CM, Hochella MF Jr (1990) Scanning tunnehng microscopy of sulfide surfaces. Geochim Cosmochim Acta 54: 1511–1517CrossRefGoogle Scholar
  47. Golovchenko J A (1986) The tunnehng microscope: A new look at the atomic world. Science 232: 48–53CrossRefGoogle Scholar
  48. Hansma PK, Tersoff J (1987) Scanning tunnehng microscopy. J Appl Phys 61: R1-R23CrossRefGoogle Scholar
  49. Hartman H, Sposito G, Yang A, Manne S, Gould SAC (1990) Molecular-scale imaging of clay mineral surfaces with atomic force microscope. Clays Clay Mineral 38: 337–342CrossRefGoogle Scholar
  50. Hochella MF Jr, Eggleston CM, Elings VB, Parks GA, Brown GE Jr, Wu ChM, Kjoller K (1989) Mineralogy in two dimensions: scanning tunnehng microscopy of semiconducting minerals with implications for geochemical reactivity. Am Mineral 74: 1233–1246Google Scholar
  51. Hochella MF Jr, Eggleston CM, Elings VB, Thompson MS (1990) Atomic structure and morphology of the albite 0 10 surface: an atomic-force microscope and electron diffraction study. Am Mineral 75: 723–730Google Scholar
  52. Sharp TG, Zheng NJ, Chang CS, Tsong 1ST, Buseck PR (1989) Scanning tunnehng microscopy studies of galena (001) cleavage surfaces (Abstr) EOS 70: 1394Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • H.-R. Wenk
  • A. C. McLaren
  • G. M. Pennock
  • V. A. Drits
  • H. R. Wenk
  • U. Beller
  • A. V. Ermakov
  • S. V. Titkov

There are no affiliations available

Personalised recommendations