Skip to main content

Solid State Spectroscopy

  • Chapter
  • 274 Accesses

Part of the Advanced Mineralogy book series (AM,volume 2)

Abstract

The Mössbauer effect is the recoil-free emission and resonant absorption of γ-rays by specific atomic nuclei in sohds. The γ-rays can be used as a probe of nuclear energy levels which are sensitive to the local electron configuration and the electric and magnetic fields of the solid. Thus Mössbauer spectroscopy can differentiate between oxidation states of atoms, electron spin states, and structural environments. Of particular mineralogical and petrological interest are the abihties to derive oxidation ratios and site-occupancies of elements (isotopes) sensitive to the technique.

Keywords

  • Nuclear Magnetic Resonance
  • Electronic Paramagnetic Resonance Spectrum
  • Nuclear Quadrupole Resonance
  • Nuclear Magnetic Resonance Spectroscopy
  • Mossbauer Spectrum

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-78526-9_3
  • Chapter length: 164 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-78526-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amthauer G, Rossman GR (1984) Mixed valence of iron in minerals with cation clusters. Phys Chem Miner 11: 37–51

    CrossRef  Google Scholar 

  • Hawthorne FC (1988) Mössbauer spectroscopy. Rev Mineral 18: 255–340

    Google Scholar 

  • Maddock AG (1985) Mössbauer spectroscopy in mineral chemistry. In: Berry FJ, Vaughan DJ (eds) Chemical bonding and spectroscopy in mineral chemistry. Chapman and Hall, London pp 141–208

    CrossRef  Google Scholar 

  • Seifert F (1988) Recent advances in the mineralogical applications of the 57Fe Mössbauer effect. Phys Prop Thermodyn Behav Miner, Proc NATO Adv Study Inst, Cambridge, July 27-Aug 8, 1987 Dordrecht, pp 687–703

    Google Scholar 

  • Seifert F (1990) Phase transition in minerals studied by 57Fe Mössbauer spectroscopy. In: Mottana A, Burregato F (eds) Absorption spectroscopy in mineralogy. Amsterdam, Elsevier pp 145–170

    Google Scholar 

References of Figures

  • Bancroft GM (1974) Mössbauer spectroscopy: an introduction for inorganic chemists and geochemists. McGraw-Hill Maidenhead

    Google Scholar 

  • Wertheim GK (1964) The Mössbauer effect. Principles and applications. Academic Press, New York

    Google Scholar 

  • Hawthorne FC (1988) Mössbauer spectroscopy. Rev Mineral 18: 255–340

    Google Scholar 

  • Amthauer G, Annersten H, Hafner SS (1976) The Mössbauer spectrum of 57Fe in silicate garnets. Z Kristallogr 143: 14–55

    Google Scholar 

  • Schwartz KB, Nolet, DA, Burns RG (1980) Mössbauer spectroscopy and crystal chemistry of natural Fe-Tigarnets. Am Mineral 65: 142–153

    Google Scholar 

  • Virgo D, Hafner SS (1970) Fe2+, Mg order-disorder in natural orthopyroxenes. Am Mineral 55: 201–223

    Google Scholar 

  • Bancroft GM, Williams PGL, Burns RG (1971) Mössbauer spectra of minerals along the diopside-hedenbergite tiehne. Am Mineral 56: 1617–1625

    Google Scholar 

  • Hafner SS, Huckenholz HG (1971) Mössbauer spectrum of synthetic ferridiopside. Nature 233: 9–11

    Google Scholar 

  • Aldridge LP, Bancroft GM, Fleet ME, Herzberg CT (1978) Omphacite studies, II, Mössbauer spectra of C2/c and P2/n omphacites. Am Mineral 63: 1107–1115

    Google Scholar 

  • Hafner SS Ghose S (1971) Iron and magnesium distribution in cummingtonites (FeMg)7Si8022(OH)2. Z Kristallogr 133: 301–326

    CrossRef  Google Scholar 

  • Goldman DS, Rossman GR (1977) The identification of Fe2+ in the M(4) site of calcic amphiboles. Am Mineral 62: 205–216

    Google Scholar 

  • Bancroft GM, Brown JR (1975) A Mössbauer study of coexisting hornblendes and biotites: quantitative Fe3+/Fe2+ ratios. Am Mineral 60: 265–272 (1975)

    Google Scholar 

  • Finch J, Gainsford AR, Tennant WC (1982) Polarized optical absorption and 57Fe Mössbauer study of pegmatitic muscovite. Am Mineral 67: 59–68

    Google Scholar 

  • Dyar MD, Burns RG (1986) Mössbauer spectral study of ferruginous one-layer trioctahedral micas. Am Mineral 71: 955–965

    Google Scholar 

  • Amthauer G, Mclver JR, Viljoen EA (1979) 57Fe and 117Sn Mössbauer studies of natural tin- bearing garnets. Phys Chem Mineral 4: 235–244

    CrossRef  Google Scholar 

  • Amthauer G (1986) Crystal chemistry and valences of iron, antimony and tin in franckeites. Neues Jahrb Mineral Abh 153: 272–278

    Google Scholar 

  • Wagner FE, Marion Ph, Reynard J-R (1988) A 197Au and 57Fe Mössbauer study of the roasting of refractory gold ores. Hyperfine Interactions 46: 681–688

    CrossRef  Google Scholar 

References

  • Agarwal BK (1979) X-ray spectroscopy. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Azaroif LV, Pease DM (1974) X-ray absorption spectra. In: Azaroff LV (ed) X-ray spectroscopy. McGraw-Hill, Montreal, Canada

    Google Scholar 

  • Fadley CS (1978) Basic concepts in X-ray photoelectron spectroscopy. In: Brundle CR, Baker AD (eds) Electron spectroscopy — theory, techniques and applications. Academic Press, New York, 2:1

    Google Scholar 

  • Price WC, Potts AW, Streets DG (1972) The dependence of photoionization cross-section on the photoelectron energy. In: Shirley DA (ed) Electron spectroscopy. North-Holland Publ Co, Amsterdam, Netherlands, p 187

    Google Scholar 

  • Siegbahn K, Nordling C, Fahlman A, Nordberg R, Hamrin K, Hamrin J, Johansson G, Bergmark T, Karlsson S-E, Lindgren I, Lindberg B (1967) ESCA, Atomic molecular and solid state structure studied by means of electron spectroscopy Nova. Acta Reg Soc Sci Upsaliensis ser. IV 20 (1)

    Google Scholar 

  • Teo BK, Joy DC (1981) EXAFS spectroscopy, Plenum Press, New York

    CrossRef  Google Scholar 

  • Thompson M, Baker MD, Christie A, Tyson JF (1985) Auger electron spectroscopy, J Wiley, London

    Google Scholar 

  • Urch DS (1988) PAX (photoelectron and X-ray spectroscopy): basic principles and chemical effects. In: Gomes Ferreira J, Teresa Ramos M (eds) X-ray spectroscopy in atomic and solid state physics. Plenum Press, New York

    Google Scholar 

References

  • Abrajano TA, Bates JK, Woodland AB, Bradley JP, Bourcier WL (1990) Secondary phase formation during nuclear waste-glass dissolution. Clays and Clay Minerals 38: 537–548

    CrossRef  Google Scholar 

  • Bernstein LR, Waychunas GA (1987) Germanium crystal chemistry in hematite and goethite from the Apex Mine, Utah, and some new data on germanium in aqueous solution and in stottite. Geochimica et Cosmochimica Acta 51: 623–630

    CrossRef  Google Scholar 

  • Bottero JY, Axelos M, Tchoubar D, Cases JM, Fripiat JJ, Fiessinger F (1987) Mechanism of Formation of Aluminium Trihydroxide from Keggin AI13 Polymers. Journal of Colloid and Interface Science 117:47–57

    CrossRef  Google Scholar 

  • Brown GE Jr (1990) Spectroscopic studies of chemisorption reaction mechanisms at oxide- water interfaces. In “Mineral-Water Interface Geochemistry”, M.F. Hochella and A.F. White Ed., Reviews in Mineralogy 23, Mineralogical Society of America, Washington DC, pp 309–364

    Google Scholar 

  • Brown GE Jr, Calas G. Waychunas GA, Petiau J (1988) X-ray absorption spectroscopy: applications in Mineralogy and Geochemistry. In “Spectroscopic Methods in Mineralogy and Geology”, F.C. Hawthorne Ed., Reviews in Mineralogy 18, Mineralogical Society of America, Washington DC, pp 431–512

    Google Scholar 

  • Calas G, Brown GE Jr, Waychunas GA, Petiau J (1987) X-ray absorption spectroscopic studies of silicate glasses and minerals. Physics and Chemistry of Minerals 15: 19–29

    CrossRef  Google Scholar 

  • Calas G, Manceau A, Combes JM, Farges F (1990) Applications of EXAFS in Mineralogy. In: A. Mottana and F. Burragato (eds) Absorption spectroscopy in Mineralogy. Elsevier, New York 172–204

    Google Scholar 

  • Charlet L, Manceau A (1992) X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide/water interface. II Adsorption, coprecipitation and surface precipitation on ferric hydrous oxides. Journal of Colloid and Interface Science 148: 425–442

    CrossRef  Google Scholar 

  • Chukhrov FV, Gorshkov Al, Vitovskaya IV, Drits VA, Sivtsov AV, Rudnitskaya YeS (1980) Crystallochemical nature of Co-Ni asbolan. An SSSR Izvestiya, Seriya Geologicheskaya, 6, 73–81. (Translation in Int Geol Rev 24: 5, 598–604)

    Google Scholar 

  • Chukhrov FV, Manceau A, Sakharov BA, Combes JM, Gorshkov Al, Salyn AL, Drits VA (1988) Crystal chemistry of oceanic Fe-containing vernadites. Mineralogicheskii Journal 10: 78–92

    Google Scholar 

  • Combes JM, Manceau A, Calas G (1986) Study of the local structure in poorly-ordered precursors of iron oxihydroxides. Journal de Physique C8: 697–701

    Google Scholar 

  • Combes JM, Manceau A, Calas G, Bottero JY (1989) Formation of ferric oxides from aqueous solutions: a polyhedral approach by X-ray absorption spectroscopy. I. Hydrolysis and formation of ferric gels. Geochimica et Cosmochimica Acta 53: 583–594

    CrossRef  Google Scholar 

  • Combes JM, Manceau A, Calas G (1990) Formation of ferric oxides from aqueous solutions: a polyhedral approach by X-ray absorption spectroscopy. II. Hematite formation from ferric gels. Geochimica et Cosmochimica Acta 54: 1083–1091

    CrossRef  Google Scholar 

  • Cressey G, Steel AT (1988) An EXAFS study of Gd, Er and Lu site location in the epidote structure. Physics and Chemistry of Minerals 15: 304–312

    CrossRef  Google Scholar 

  • Decarreau A, Colin F, Herbillon A, Manceau A, Nahon D, Paquet H, Trauth-Badaud D, Trescases JJ (1987) Domain segregation in Ni-Mg-Fe smectites. Clay and Clay Minerals 35: 1–10

    CrossRef  Google Scholar 

  • Drits VA, Sakharov BA, Salyn AL, Manceau A (1993) Structural model for ferrihydrite. Clay Minerals, 185–208.

    Google Scholar 

  • Dumas T, Petiau J (1986) EXAFS study of titanium and zinc environments during nucleation in a cordierite glass. J. Non-crystalline Solids 81: 201–220

    CrossRef  Google Scholar 

  • Eary LE, Rai D (1987) Kinetics of chromium (III) oxidation to chromium (VI) by reaction with manganese dioxide. Environmental Science and Technology 21: 1187–1193

    CrossRef  Google Scholar 

  • Greaves GN (1985) EXAFS and the structure of glass. Journal of Non Crystalline solids 71:203–217

    CrossRef  Google Scholar 

  • Greaves GN, Barrett NT, Antonini GM, Thornley FR, Wilhs BTM, Steel A (1989) Glancing- Angle X-ray Absorption Spectroscopy of Corroded Borosilicate Glass Surfaces Containing Uranium. Journal of the American Chemical Society 111:4313–4324

    CrossRef  Google Scholar 

  • Greegor RB, Sandstrom DR, Wong J, Schultz PC (1983) Investigation of Ti02-Si02 glasses by x-ray absorption spectroscopy. J. Non-crystalline Solids 55: 27–43

    CrossRef  Google Scholar 

  • Hayes KF, Roe AL, Brown GE Jr, Hodgson KO, Leckie JO, Parks GA (1987) In situ X-ray absorption study of surface complexes: selenium oxyanions on αFeOOH, Science 238: 783–786

    CrossRef  Google Scholar 

  • Hayes KF, Papelis C, Leckie JO (1988) Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces. Journal of Colloid and Interface Science 125: 717–728

    CrossRef  Google Scholar 

  • Hazemann JL, Manceau A, Sainctavit Ph, Malgrange C (1992) Structure of the αFexAl1-x- OOH solid solution. I. Evidence by polarized exafs for an epitaxial growth of hematite-like clusters in diaspore. Physics and Chemistry of Minerals 19: 25–38

    CrossRef  Google Scholar 

  • Ingalls R, Garcia GA, Stern EA (1978) X-ray absorption at high pressure. Physics Review Letters 40: 334–336

    CrossRef  Google Scholar 

  • Itie JP, Pohan A, Calas G, Petiau J, Fontaine A, Tolentino H (1989) Pressure- induced Coordination changes in crystaUine and vitreous Ge02. Physics Review Letters 63: 398–401

    CrossRef  Google Scholar 

  • Jackson WE, Brown GE Jr, Waychunas GA, Mustre J, Conradson SD, Combes JM (1991) In situ high-temperature x-ray absorption study of divalent iron in orthosilicates, crystals, and hquids. In: S.S. Hasnain (ed) XAFS VI, Sixth Internat. Conf. on X-ray Absorption Fine Structure. Ellis Horwood Ltd. Publishers (in press)

    Google Scholar 

  • Johnson CA, Xyla AG (1991) The oxidation of chromium (III) to chromium (VI) on the surface of manganite (yMnOOH). Geochimica et Cosmochimica Acta 55: 2861–2866

    CrossRef  Google Scholar 

  • Manceau A (1990) Distribution of cations among the octahedra of phyllosilicates: insight from EXAFS. Canadian Mineralogist 28: 321–328

    Google Scholar 

  • Manceau A, Charlet L (1992) X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide/water interface. I Molecular mechanism of Cr(III) oxidation on Mn oxides. Journal of Colloid and Interface Science 148: 443–458

    CrossRef  Google Scholar 

  • Manceau A, Combes JM (1988) Structure of Mn and Fe oxides and oxyhydroxides: a topological approach by EXAFS. Physics and Chemistry of Minerals 15: 283–295

    CrossRef  Google Scholar 

  • Manceau A, Drits VA (1993) Local structure of ferrihydrite and feroxyhite by EXAFS spectroscopy. Clay Minerals 165–184

    Google Scholar 

  • Manceau A, Llorca S, Calas G (1987) Crystal chemistry of cobalt and nickel in lithiophorite and asbolane from New Caledonia. Geochimica et Cosmochimica Acta 51: 105–113

    CrossRef  Google Scholar 

  • Manceau A, Bonnin D, Stone WE, Sanz J, Kaiser P Fretigny C (1988) Polarized EXAFS of biotite and chlorite. Physics and Chemistry of Minerals 16: 180–185

    CrossRef  Google Scholar 

  • Manceau A, Buseck PR, Miser D, Rask J, Nahon D (1990a) Characterization of Cu in lithiophorite from a banded Mn ore. American Mineralogist 75: 490–494

    Google Scholar 

  • Manceau A, Bonnin D, Stone WE, Sanz J (1990b) Distribution of Fe in the octahedral sheet of trioctahedral micas by polarized EXAFS. Comparison with nmr results. Physics and Chemistry of Minerals 17: 363–370

    CrossRef  Google Scholar 

  • Manceau A, Gorshkov Al, Drits VA (1992a) Structural Chemistry of Mn, Fe, Co, and Ni in Mn hydrous oxide. II. Information from EXAFS spectroscopy, electron and X-ray diifraction. American Mineralogist 77: 1144–1157

    Google Scholar 

  • Manceau A, Charlet L, Boisset MC, Didier B, Spadini L (1992b) Sorption and speciation of heavy metals on Fe and Mn hydrous oxides. From microscopic to macroscopic. Applied Clay Science 7: 201–223

    CrossRef  Google Scholar 

  • PauHng L, Kamb B (1982) The crystal structure of hthiophorite. American Mineralogist 67: 817–821

    Google Scholar 

  • Ramos A, Petiau J, Gandais M (1985) CrystaUine nucleation process in (Si02-Al203-Li20) glasses. J. dePhysique C8: 491–494

    Google Scholar 

  • Sandstrom DR, Lytle FW, Wei PSP, Greegor RB, Wong J, Schultz PC (1980) Coordination of Ti in TiO2-SiO2 glass by x-ray absorption spectroscopy. J. Non-crystalHne Solids 41:201–207

    CrossRef  Google Scholar 

  • Sanz J, Stone W.E.E. (1977) NMR study of micas. I. Distribution of Fe2+ions on the octahedral sites. Journal of Chemical Physics 67: 3739–3743

    CrossRef  Google Scholar 

  • Sanz J, Stone W.E.E. (1983a) NMR study of minerals: III. The distribution of Mg2+ and Fe2+ around OH groups in micas. Journal of Physics C: Solid State Physics 16: 1271–1281

    CrossRef  Google Scholar 

  • Sanz J, Stone W.E.E. (1983b) NMR applied to minerals: IV. Local order in the octahedral sheet of micas: Fe-F avoidance. Clay Minerals 18: 187–192

    CrossRef  Google Scholar 

  • Schwertmann U, Murad E. (1983) The effect of pH on the formation of goethite and hematite from ferrihydrite. Clays and Clay Minerals 31: 277–284

    CrossRef  Google Scholar 

  • Stucki JW, Goodman BA, Schwertmann U (1988) Iron in Soils and Clay Minerals. NATO Series ASI, vol. 217, Riedel Publishing Company.

    Google Scholar 

  • Stumm W, Wollast R (1990) Coordination chemistry of weathering: kinetics of the surface- controlled dissolution of oxide minerals. Reviews of Geophysics 28: 53–69

    CrossRef  Google Scholar 

  • Sueno S, Nakai I, Imafuku M, Morikawa H, Kimata M, Ohsumi K, Nomura M, Shimomura O (1986) EXAFS measurements under high presure conditions using a combination of a diamond anvil cell and synchrotron radiation. Chem. Letters 1663–1666

    Google Scholar 

  • Tafto J, Buseck PR (1983) Quantitative study of Al-Si ordering in an orthoclase feldspar using an analytical transmission electron miscroscope. American Mineralogist 68: 944–950

    Google Scholar 

  • Tardy Y, Nahon D (1985) Geochemistry of laterites, stability of Al-goethite, Al-hematite and Fe2+-kaolinite in bauxites and ferricretes: an approach to the mechanism of concretion formation. American Journal of Science 285: 865–903

    CrossRef  Google Scholar 

  • Tchoubar D, Bottero JY, Qienne P, Arnaud M (1991) Partial Hydrolysis of Ferric Chloride Salt. Structural Investigation by Photon-Correlation Spectroscopy and Small-Angle X-ray Scattering, Langmuir 7: 398–402

    Google Scholar 

  • Trolard F, Tardy Y (1987) The stabihties of gibbsite, boehmite, aluminous goethites and aluminous hematites in bauxites, ferricretes and laterites as a function of water activity, temperature and particle size. Geochimica et Cosmochimica Acta 51: 945–957

    CrossRef  Google Scholar 

  • Wadsley AD (1952) The structure of lithiophorite, (Al,Li)MnO2(OH)2. Acta Crystallographica 5: 676–680

    CrossRef  Google Scholar 

  • Waychunas GA (1983) Mossbauer, EXAFS and X-ray diffraction study of Fe2+ clusters in MgO:Fe and magnesiowstite (Mg,Fe)1-xO — Evidence for specific cluster geometries. Journal of Material Science 18: 195–207

    CrossRef  Google Scholar 

  • Waychunas GA (1987) Synchrotron radiation XANES spectroscopy of Ti in minerals: effects of Ti bonding distances, Ti valence and site geometry on absorption edge structure. American Mineralogist 72: 89–101

    Google Scholar 

  • Waychunas GA, Brown GE (1990) Polarized X-ray absorption spectroscopy of Metal ions in Minerals: Applications to site Geometry and electronic structure determination. Physics and Chemistry of Minerals 17:420–430

    CrossRef  Google Scholar 

  • Waychunas GA, Brown GE Jr, Apted MJ (1986) X-ray K-edge absorption spectra of Fe minerals and model compounds: II EXAFS. Physics and Chemistry of Minerals 13: 31–47

    CrossRef  Google Scholar 

  • Waychunas GA, Brown GE Jr, Ponader CW, Jackson WE (1988) Evidence of networkforming Fe2+ in molten alkah silicates. Nature 332: 251–253

    CrossRef  Google Scholar 

  • Yarker CA, Johnson PAV, Wright AC, Wong J, Greegor RB, Lytle FW, Sinclair RN (1986) Neutron diffraction and EXAFS evidence for TiO5 units in vitreous K2O-TiO2-2SiO2. J. Non-crystalline Solids 79: 117–136

    CrossRef  Google Scholar 

References

  • Abs-Wurmbach I, Langer K, Seifert F, Tillmanns E (1981) The crystal chemistry of (Mn3+Fe3+)-substituted andalusties (viridines and kanonaite), (Al1-x-yMnx 3+FCy y 3)2(0/Si04): cystal structure refinements, Mossbauer, and polarized optical absorption spectra. Z Krist 155: 81–113

    CrossRef  Google Scholar 

  • Abs-Wurmbach I, Langer K, Schreyer W (1983) The influence of Mn3+ on the stability relations of the Al2Si05 polymorphs with special emphasis on manganian andalusites (viridines), Al1-xMnx 3)2(0/Si04): an experimental investigation. J Petrol 24: 48–75

    CrossRef  Google Scholar 

  • Abs-Wurmbach I, Langer K, Oberhansli R (1985) Polarized absorption spectra of single crystals of of the chromium bearing clinopyroxenes cosmoclore and Cr-aegirine-augite. Neues Jahrb Mineral Abh 152: 293–319

    Google Scholar 

  • Adams JW (1975) Interpretation of visible and near-infrared diffuse reflectance spectra of pyroxenes and other rock-forming minerals. In: Karr C (ed) Infrared and Raman spectroscopy of lunar and terrestrial minerals. Academic Press, London

    Google Scholar 

  • Amthauer G, Rossman GR (1984) Mixed valence of iron in minerals with cation clusters. Phys Chem Mineral 11: 37–51

    CrossRef  Google Scholar 

  • Bakhtin Al, Vinokurov VM (1978) Exchange-coupled pairs of transition metal ions and their efl’ect on the optical absorption spectra of rock-forming silicates. Geokhimiya 1: 87–95 (Translation in Geochem Int (1978): 53–60)

    Google Scholar 

  • Berry FJ, Vaughan DJ (1985) Chemical bonding and spectroscopy in mineral chemistry. Chapman Hall, London.

    CrossRef  Google Scholar 

  • Burns RG (1970) Mineralogical apphcations of crystal field theory. Cambridge Univ Press, Cambridge. During the preparation of the present book, the 2nd edn appeared:

    Google Scholar 

  • Tsurus RG (1993) Burns RG (1989) Spectral mineralogy of terrestrial planets: scanning their surfaces remotely. Mineral Mag 53: 135–151

    Google Scholar 

  • Cemic L, Grammenopoulou-Bilal S, Langer K (1986) A microscope-spectrometric method for determining small Fe3+concentrations due to Fe3+-bearing defects in fayalite. Ber Bunsen- Ges Phys Chem 90: 654–661

    CrossRef  Google Scholar 

  • Clark RN, King TVV, Klejwa M, Swayze G, Vergo N (1990) High spectral resolution reflectance spectroscopy of minerals. J Geophys Res 95: 12, 653–12, 680

    Google Scholar 

  • Ghose S, Kersten M, Langer K, Rossi G, Ungaretti L (1986) Crystal field spectra and Jahn Teller effect of Mn3+ in clinopyroxenes and clinoamphiboles from India. Phys Chem Mineral 13: 291–305

    CrossRef  Google Scholar 

  • Goldman DS, Rossman GR (1977) The spectra of iron in orthopyroxene revisited: the sphtting of the ground state. Am Mineral 62: 151–157

    Google Scholar 

  • Halenius U, Langer K (1980) Microscope photometric methods for nondestructive determination in chloritoid, (Fe2+,Mn2+,Mg)2(Al, Fe3+)4Si2O10(OH)4. Lithos 13: 291–294

    CrossRef  Google Scholar 

  • Halenius U, Annersten H, Langer K (1981) Spectral studies on natural chloritoids. Phys Chem Mineral 7: 117–123

    CrossRef  Google Scholar 

  • Hu X, Langer K, Bostrom D (1990) Polarized electronic absorption spectra and Ni-Mg partitioning in olivines (Mgi1-xNix)2[SiO4]. Eur J Mineral 2: 29–41

    Google Scholar 

  • Hunt GR, Salisbury JW, Lenhoff CJ (1973) Visible and near infrared spectra of minerals and rocks, VI, additional sihcates. Mod Geol 4: 85–106

    Google Scholar 

  • Kersten M, Langer K, Almen H, Tillmamms E (1987) the polarized single crystal spectra and structures of synthetic thulite and piemontites. Z Kristallogr 185: 111

    Google Scholar 

  • Khomenko VM, Platonov AN (1985) Electronic absorption spectra of Cr3+ ions in natural chnopyroxenes. Phys Chem Mineral 11: 261–265

    CrossRef  Google Scholar 

  • Khomenko VM, Platonov AN (1987) The optical spectra, color and pleochroism of rock forming pyroxenes. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  • Kortüm G (1969) Reflexionspektroskopie. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Langer K (1984) Die Farbe von Mineralen und ihre Aussagefaehigkeit fuer die Kristallchemie. Rheinisch-Westfael Akad Wiss N332: 7–60

    Google Scholar 

  • Langer K (1988) UV to NIR spectra of silicate minerals obtained by microscope spectrometry and their use in mineral thermodynamics and kinetics. In: Salje EKH (ed) Physical properties and thermodynamic behaviour of minerals. Reidel, pp 639–685

    CrossRef  Google Scholar 

  • Langer K, Frentrup KR (1979) Automated microscope-absorption spectroscopy of rock- forming minerals in the range 400(X)-5000 cm-1 (250–2000 nm). J Microsc 116: 311–320

    CrossRef  Google Scholar 

  • Marfunin AS (1979) Physics of minerals and inorganic materials Springer, Berlin Heidelberg New York

    CrossRef  Google Scholar 

  • Matsuk SS, Platonov AN, Khomenko VM (1985) The optical spectra and color of the mantle minerals in kimberlites. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  • Nassau K (1983) The physics and chemistry of color: the fifteen causes of color. John Wiley and Sons, New York

    Google Scholar 

  • Peckett A, Phillips R, Henry NFM (1992) The colours of opaque minerals. John Wiley, New York

    Google Scholar 

  • Platonov AN (1976) Tlle nature of the color of minerals. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  • Platonov AN, Taran MN, Balitsky VS (1984) The nature of color of gemstones. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  • Platonov AN, Matsuk SS, Khomenko VM, Taran MN, Litvin MA (1988) Optical activity as an indicator of the evolution of mineral matter. In: Theory of Mineralogy. Leningrad, 76–86. (in Russain)

    Google Scholar 

  • Rager H, Hosoya S, Weiser G (1988) Electron paramagnetic resonance and polarized optical absorption spectra of Ni3+ in synthetic forsterite. Phys Chem Mineral 15: 383–389

    CrossRef  Google Scholar 

  • Rossman GR (1988) Optical spectroscopy. In: Hawthrone FC (ed) Spectroscopic methods in mineralogy and geology. Rev Mineral 18: 207–254

    Google Scholar 

  • Schläfer HL, Gliemann G (1980) Einführung in die Ligandenfeldtheorie, 2nd edn. Akad Verlagsges. Frankfurt/M

    Google Scholar 

  • Sherman DM (1987a) Molecular orbital (SCF-Xa-SW) theory of metal-metal charge transfer processes in mineral. I. Applications to Fe2+-Fe3+ charge transfer and “electron derealization” in mixed-valence iron oxides and silicates. Phys Chem Mineral 14: 355–363

    CrossRef  Google Scholar 

  • Sherman DM (1987b) Molecular orbital (SCF-Xa-SW) theory of metal-metal charge transfer processes in mineral, ii. Applications to Fe2+-Ti3+ charge transfer transitions in oxides and silicates. Phys Chem Mineral 14: 364–367

    CrossRef  Google Scholar 

  • Sherman DM, Waite TD (1985) Electronic spectra of Fe2+ oxides and oxide hydroxides in the near IR to near UV. Am Mineral 70: 1262–1269

    Google Scholar 

  • Steffen G, Langer K, Seifert F (1988) Polarized electronic absorption spectra of synthetic (Mg,Fe)-orthopyroxenes, ferrosihte, and Fe2+-bearing ferrosihte. Phys Chem Mineral 16: 120–129

    CrossRef  Google Scholar 

  • Vaughan DJ (1990) Some contributions of spectral studies of the visible (and near-visible) light region to mineralogy. In: Monttana A, Burragato F (Eds) Absorption spectroscopy in mineralogy. Elsevier, Amsterdam, pp 2–38

    Google Scholar 

References

  • Blasse G (1980) The luminescence of closed-shell transition-metal complexes, New developments. Struct Bonding 42: 1–42

    CrossRef  Google Scholar 

  • Blasse G, Aguilar M (1984) Luminescence of natural calcite (CaCO3). J Lumin 29: 239–241

    Google Scholar 

  • Deb SK, Gallivan JB (1972) Photoluminescence of Oj- and S2-ions in synthetic sodahtes. J Lumin 5: 348–360

    CrossRef  Google Scholar 

  • Gorobets BS (1981) Spectre luminescence of minerals. Moscow, 154 pp

    Google Scholar 

  • Krasilshchikova OA, Tarashchan AN, Platonov AN (1986) Colour and luminescence of natural fluorite. Naukowa Dumka, Kiev, 224 pp

    Google Scholar 

  • Krasnobaev A A, Votyakow SL, Krochalev VJ (1988) Spectroscopy of zircons. Nauka, Moscow, 150 pp

    Google Scholar 

  • Kuznetsov GV, Tarashchan AN (1988) Luminescence of minerals of granitic pegmatites. Naukowa Dumka, Kiev, 178 pp

    Google Scholar 

  • Marfunin AS (1979) Spectroscopy, luminescence and radiation centers in minerals. Springer, Berlin Heidelberg New York, 352 pp

    CrossRef  Google Scholar 

  • McKeever SWS (1985) Thermoluminescence of solids. Cambridge Univ Press, Cambridge, 367 pp

    CrossRef  Google Scholar 

  • Medhn WL (1964) Trapping centers in thermoluminescent calcite. Phys Rev 135: 1770–1779

    CrossRef  Google Scholar 

  • Medlin WS (1968) The nature of traps and emission centers in thermoluminescent rock materials. In: McDougall DJ (ed) Thermoluminescence of geological materials. Academic Press, New York, pp 193–223

    Google Scholar 

  • Tarashchan AN (1978) Luminescence of minerals. Naukowa Dumka, Kiev, 296 pp

    Google Scholar 

  • Telfer DJ, Walker G (1978) Ligand field bands of Mn2+ and Fe3+ luminescence centers and their site occupancy in plagioclase feldspars. Mod Geol 6: 199–210

    Google Scholar 

  • Walker G (1985) Mineralogical aspects of Luminescence techniques. In: Berry FJ, Vaughan DJ (eds) Chemical bonding and spectroscopy in mineral chemistry. Chapman and Hall, London, p 103

    CrossRef  Google Scholar 

  • Waychunas GA (1988) Luminescence, X-ray emission and new spectroscopies. Rev mineral 18: 639–698

    Google Scholar 

  • White WB (1975) Luminescent materials. Trans Am Crystallogr Assoc 11: 31–49

    Google Scholar 

  • White WB, Masako M, Linnehan DG, Furukawa T, Chandrasekhar BK (1986) Absorption and luminescence of Fe2+ in single-crystal orthoclase. Am Mineral 71: 1415–1419

    Google Scholar 

  • Williams FE (1966) Theoretical basis for solid-state luminescence. In: Goldberg P (ed) Luminescence of inorganic solids. Academic Press, New York, pp 1–52

    Google Scholar 

References

  • Hamers RJ, Wietfeld JR, Wright JC (1982) Defect chemistry in CaF2: Eu3+J Chem Phys 77: 683–692

    Google Scholar 

  • Iliev M, Liarokapis E, Sendova M B1 (1988) Laser excited luminescence of rare earth impurities in natural and synthetic CaF2. Phys Chem Mineral 15: 597–600

    CrossRef  Google Scholar 

  • Seelbinder MB, Wright JC (1979) Site-selective spectroscopy of CaF2:Ho3+. Phys Rev B20: 4308–4320

    Google Scholar 

  • Sendova-Vassileva M, Iliev M, Liarokapis E (1988) One-phonon-assisted laser excitation of Er3+-” luminescence in CaFj. Bulg J Phys 15: 367–373

    Google Scholar 

  • Tallant DR, Wright JC (1975) Selective laser excitation of charge compensated sites in CaF2: Er3+. J Phys Chem 63: 2074–2085

    CrossRef  Google Scholar 

  • Sendova-Vassileva M, Iliev M, Chadwick AV (1991) Laser-excited luminescence of CaF2: Ho. The role of phonons. J Phys Condensed Matter 3: 5407–5414

    CrossRef  Google Scholar 

References

  • Gorobets BS (1981) Spectra of luminescence of minerals. All Union Institute of Raw Materials (VIMS). Moscow (in Russian)

    Google Scholar 

  • Gorobets BS, Gaft ML, Laverova VL (1978) Photoluminescence of manganese minerals. J Appl Spectrosc 28(6): 750

    CrossRef  Google Scholar 

  • Marfunin AS (1979) Spectroscopy, luminescence and radiation centers in minerals. Springer, Berlin Heidelberg New York

    CrossRef  Google Scholar 

  • Seigel HO, Robbins JC (1985) Luminescence method — new method of air and ground exploration of ore deposits. ITC J 3: 162–168

    Google Scholar 

  • Tarashchan AN (1978) Luminescence of minerals. Naukova Dumka (in Russian) Walker G (1985) Mineralogical applications of luminescence techniques. In: Berry FJ, Vaughan DJ (eds) Chemical bonding and spectroscopy in mineral chemistry. Chapman and Hall, London, pp 103–40

    Google Scholar 

  • Walker G, Abumere OE, Kamaluddin B (1989) Luminescence spectroscopy of Mn2+ centres in rock-forming carbonates. Mineral Mag 53: 201–11

    CrossRef  Google Scholar 

  • Walker G, Burley SD (1991) Luminescence petrography and spectroscopic studies in dia- genetic minerals. In: Barker CE, Kopp OC (eds) Luminescence microscopy: quahtative and quantitative applications Spec Pub Soc Econ Pal Mineral (SEPM short course no. 25): 83–96

    Google Scholar 

  • Waychunas GA (1988) Luminescence, X-ray emission and new spectroscopies. In: Hawthorne FC (ed) Spectroscopic methods in mineralogy and geology. Rev Mineral 18: 639–694

    Google Scholar 

References

  • Bull RK, McKeever SWS, Chen R, Mathur VK, Rhodes JF, Brown MD (1986) Thermoluminescence kinetics for multipeak glow curves produced by the release of electrons and holes. J Phys D Appl Phys 19: 1321–34

    CrossRef  Google Scholar 

  • Chen R (1969) Glow curves with general order kinetics. J Electrochem Soc 116: 1254–7

    CrossRef  Google Scholar 

  • Chen R, Kirsh Y (1981) Analysis of thermally stimulated processes. Pergamon Press, Oxford

    Google Scholar 

  • de Murcia M, Braunlich P, Egge M, Mary G (1980) Thermally stimulated relaxation of photoconverted CdFjiSm3+. Sol State Commun 33: 737–41

    CrossRef  Google Scholar 

  • Dussel GA, Bube RH (1967) Theory of thermally stimulated conductivity in a previously photoexcited crystal. Phys Rev 155: 764–79

    CrossRef  Google Scholar 

  • Fillard JP, Gasiot J, Jimenez J, Sanz FL, de Sala JA (1977) Evidence of refilhng of recombination centers during thermal stimulation. J Electrostat 3: 133–8

    CrossRef  Google Scholar 

  • Fillard JP, Gasiot J, Manifacier JC (1978) New approach to thermally stimulated transients: experimental evidence for ZnSe:Al crystals. Phys Rev B18: 4497–508

    Google Scholar 

  • Garlick GFJ, Gibson AF (1948) The electron trap mechanism of luminescence in sulphides and silicate phosphors. Proc Phys Soc Lond A60: 574–90

    CrossRef  Google Scholar 

  • Gasiot JP, Fillard JP (1977) Correlation in simultaneous TSC and TSL measurements. J Appl Phys 48: 3171–2

    CrossRef  Google Scholar 

  • Griscom DL (1978) Defects and impurities in alpha-quartz and fused silica. In: Pantehdes ST (ed) Physics of SiOj and its interfaces. Pergamon Press, N.Y., pp 232–52

    Google Scholar 

  • Haering RR, Adams EN (1960) Theory and application of thermally stimulated currents in photoconductors. Phys Rev 117: 451–4

    CrossRef  Google Scholar 

  • Halperin A, Braner A A (1960) Evaluation of thermal activation energies from glow curves. Phys Rev 117: 408–15

    CrossRef  Google Scholar 

  • Hasan F, Haq M, Sears DWG (1987) Natural thermoluminescence of Antarctic meteorites: a study of thermal/radiation history and pairing. Proc 17th Lunar and Planet Sci Conf, Part 2, J Geophys Res 92: E703–6

    CrossRef  Google Scholar 

  • Hayes W, Stoneham AM (1974) Color centers. In: Hayes W (ed) Crystals with the fluorite structure. Clarendon Press, Oxford, pp 185–280

    Google Scholar 

  • Henry CH, Lang DV (1977) Nonradiative capture and recombination by multiphonon emission in GaAs and GaP. Phys Rev B5: 989–1016

    Google Scholar 

  • Hoogenstraaten W (1958) Electron traps in zinc sulphide phosphors. Philips Res Rep 13: 515–693

    Google Scholar 

  • Hughes AE, Henderson B (1972) Color centers in simple oxides. In: Crawford JR, Slifkin LM (eds) Point defects in solids. Plenum Press, N.Y., pp 381–490

    Google Scholar 

  • Itoh N (1982) Mechanisms of electron-excitation-induced defect creation in alkali halides. Radiat Eff 64: 161–169

    CrossRef  Google Scholar 

  • Itoh N, Tanimura K (1986) Radiation effects in ionic solids. In: Wilson IH, Webb RP (eds) Proc 3rd Int Conf Radiation Effects in Insulators, Surrey, 1985. Gordon and Breach, London, pp 435–53

    Google Scholar 

  • Jassemnejad B, McKeever SWS (1987) Photoreversible charge transfer processes and thermoluminescence in CaF2:Ce. J Phys D Appl Phys 20: 323–8

    CrossRef  Google Scholar 

  • Levy PL (1984) Thermoluminescence kinetics in systems more general than the usual 1st and 2nd order kinetics. J Lumin 31/32: 133–5

    CrossRef  Google Scholar 

  • Lewandowski AC, McKeever SWS (1991) Generalized description of thermally stimulated processes without the quasi-equilibrium approximation. Phys Rev B 43: 8163–8178

    CrossRef  Google Scholar 

  • McKeever SWS (1980) On the analysis of complex thermoluminescence glow-curves: resolution into individual peaks. Phys Stat Sol 62: 331–40

    CrossRef  Google Scholar 

  • McKeever SWS (1982) Dating of meteorite falls using thermoluminescence: application to Antarctic meteorites. Earth Planet Sci Lett 58: 419–29

    CrossRef  Google Scholar 

  • McKeever SWS (1985) Thermoluminescence of sohds. Cambridge Univ Press, Cambridge

    CrossRef  Google Scholar 

  • McKeever SWS, Chen CY, Halliburton LE (1985) Point defects and the pre-dose effect in natural quartz. Nucl Tracks 10: 489–95

    Google Scholar 

  • Randall JJ, Wilkins MHF (1945) Phosphorescence and electron traps I. The study of trap distributions. Proc R Soc Lond A184: 366–89

    Google Scholar 

  • Saunders J (1969) Thermally stimulated luminescence and conductivity of insulators. J Phys C Sol State Phys 2: 2181–98

    CrossRef  Google Scholar 

  • Sears DWG, DeHart JM, Hasad FA, Lofgren GE (1989) Induced thermoluminescence and cathodoluminescence studies of meteorites. In: Coyne LM, McKeever SWS, Blake DF (eds) Spectroscopic characterization of minerals and their surfaces. American Chemical Society, ACS Symp Ser 145: 190–222

    Google Scholar 

References

  • Aitken MJ (1985) Thermoluminescence dating. Academic Press, New York

    Google Scholar 

  • Haskell EN, Kaipa PL, Wrenn ME (1985) Environmental and accident dosimetry using the Pre-Dose TL technique. Nucl. Tracks 10: 513

    Google Scholar 

  • Horowitz YS (ed.) (1984) Thermoluminescence and thermoluminescent dosimetry, vols. I-III CRC Press, Boca Raton

    Google Scholar 

  • Maruyama T, Kumamoto Y, Ichikawa Y, Nagamoto T, Hoshi M, Haskell E, Kaipa P (1987) U.S.-Japan joint reassessment of atomic bomb radiation dosimetry in Hiroshima and Nagasaki. Final Report DS86, 1

    Google Scholar 

  • McDougall DJ (ed.) (1968) Thermoluminescence of geological materials. Academic Press, London, New York

    Google Scholar 

  • McKeever SWS (1985) Thermoluminescence of solids. Cambridge University Press, Cambridge

    CrossRef  Google Scholar 

  • McKeever SWS (1989) Energy-storage mechanisms and thermoluminescence processes in minerals. In: Coyne LM, McKeever SWS, Blake DF (eds) Spectroscopic characterization of minerals and their surfaces. American Chemical Society, ACS Symposium Series 145:166–79

    Google Scholar 

  • McKeever SWS, Horowitz YS (1990) Charge trapping mechanisms and microdosimetric processes in lithium fluoride. Radiat Phys Chem 36: 35–42

    Google Scholar 

  • Mejdhal V (1978) Measurement of environmental radiation at archaeological excavation sites by means of TL dosimeters. PACT 2: 70–83

    Google Scholar 

  • Mejdhal V (1986) Thermal dating of sediments. Radiat Protect Dosim 17: 219–27

    Google Scholar 

  • Mische EF, McKeever SWS (1990) Mechanisms of suprahnearity in hthium fluoride dosimeters. Radiat Protect Dosim 29: 159–75

    Google Scholar 

  • Nambi KSV (1985) Proc. First Natl. Seminar on Defects in Insulating Solids, RIT, Jamshedpur, India, 3

    Google Scholar 

  • Nambi KSV, Bapat VN, David M, Sundaram VK, Sunta CM, Soman SD (1987) Countrywide environmental radiation monitoring using thermoluminescence dosemeters. Radiat Protect Dosim 18: 31–8

    Google Scholar 

  • Sears DWG (1988) Thermoluminescence from meteorites: shedding hght on the cosmos. Nucl Tracks and Radiat Meas 14: 5–17

    CrossRef  Google Scholar 

  • Sears DWG, DeHart JM, Hasad FA, Lofgren GE (1989) Induced thermoluminescence and cathodoluminescence studies of meteorites. In: Coyne LM, McKeever SWS, Blake DF (eds) Spectroscopic characterization of minerals and their surfaces. American Chemical Society, ACS Symposium Series 145: 190–222

    Google Scholar 

  • Sunta CM, Kathuria SP, Nambi KSV (1970) Proc Natl Symp on Radiation Physics, BARC, Bombay, 299

    Google Scholar 

  • Yang XH, McKeever SWS (1990) The pre-dose effect in crystaUine quartz. J Phys D Appl Phys 23: 237–44

    CrossRef  Google Scholar 

  • Vlasov VK, Kulikov OA (1989) Radiothermoiluminescence dating and applications to Pleistone sediments. Phys Chem Minerals 16: 551–8

    CrossRef  Google Scholar 

  • Zimmerman DW (1972) Relative thermoluminescence effects of alpha and beta radiation. Radiat Effects 14: 81–92

    CrossRef  Google Scholar 

References

  • Braunlich P (1968) Thermoluminescence and thermally stimulated current tools for the determination of trapping parameters. In: McDougall DJ (ed) Thermoluminescence of geological materials. Academic Press, London

    Google Scholar 

  • Holzapfel G (1976) The evolution of volume concepts to describe exoelectron emission. In: Proc 5th Int Symp Exoelectron Emission and Dosimetry, Svikov, pp 19–34

    Google Scholar 

  • Kortov VS, Zatsepin AF, Ushkova VI (1985) Exoelectron spectroscopy of traps in surface layers of phenakite and quartz. Phys Chem Mineral 12: 114–121

    CrossRef  Google Scholar 

  • Marfunin AS (1979) Spectroscopy, luminescence and radiation centers in minerals. Springer, Berlin Heidelberg New York

    CrossRef  Google Scholar 

References

  • Decius JC, Hexter RM (1977) Molecular vibrations in crystals. McGraw-Hill, New York

    Google Scholar 

  • Farmer VC (ed) (1974) The infrared spectra of minerals. Mineralogical Society, London

    Google Scholar 

  • Ghose S (1988) Inelastic neutron scattering. In: Hawthorne FC (ed) Spectroscopic methods in mineralogy and geology. Reviews in mineralogy vol 18, Mineralogical Society of America pp 162–192

    Google Scholar 

  • Kieffer SW (1985) Heat Capacity and entropy: systematic relations to lattice vibrations. In: Kieffer SW, Navrotsky A (eds) Microscopic to macroscopic: atomic environments to mineral thermodynamics. Reviews in mineralogy vol 14, Mineralogical Society of America, pp 65–126

    Google Scholar 

  • Lazarev AN (1972) Vibrational spectra and structure of silciates. Consultants Bureau, New York

    Google Scholar 

  • McMillan PF (1985) Vibrational spectroscopy in the mineral sciences. In: Kieffer SW, Navrotsky A (eds) Microscopic to macroscopic: atomic environments to mineral thermodynamics. Reviews in mineralogy vol 14, Mineralogical Society of America, pp 9–63

    Google Scholar 

  • McMillan PF, Hofmeister AM (1988) Infrared and Raman spectroscopy. In: Hawthorne FC (ed) Spectroscopic methods in mineralogy and geology. Reviews in mineralogy vol 18, Mineralogical Society of America, pp 99–159

    Google Scholar 

  • Rossman GR (1988) Vibrational spectroscopy of hydrous compoentns. In: Hawthorne FC (ed) Spectroscopic methods in mineralogy and geology. Reviews in mineralogy vol 18, Mineralogical Society of America, pp 193–206

    Google Scholar 

  • White WB (1975) Structural interpretation of lunar and terrestrial minerals by Raman spectroscopy. In: Karr C (ed) Infrared and Raman spectroscopy of lunar and terrestrial materials. Academic Press, pp 325–358

    Google Scholar 

References

  • Beran A (1976) Messung des Ultrarot-Pleochroismus von Mineralen. XIV. Der Pleochroismus der OH-Streckfrequenz in Diopsid. Tschermaks Min Petrogr Mitt 23: 79–85

    CrossRef  Google Scholar 

  • Beran A (1987) OH groups in nominally anhydrous framework structures: an infrared spectroscopic investigation of danburite and labradorite. Phys Chem Mineral 14: 441–445

    CrossRef  Google Scholar 

  • Beran A (1990) The occurrence of OH absorptions in phenakite — an IR spectroscopic study. Mineral Petrol 41: 73–79

    CrossRef  Google Scholar 

  • Beran A (1991) Trace hydrogen in Verneuil-grown corundum and its colour varieties — an IR spectroscopic study. Eur J Mineral 3: 971–975

    Google Scholar 

  • Beran A, Putnis A (1983) A model of the OH positions in olivine, derived from infrared-spectroscopic investigations. Phys Chem Mineral 9: 57–60

    CrossRef  Google Scholar 

  • Beran A, Rossman GR (1989) The water content of nepheline. Mineral Petrol 40: 235–240

    CrossRef  Google Scholar 

  • Beran A, Zemann J (1971) Messung des Ultrarot-Pleochroismus von Mineralen. XI. Der Pleochroismus der OH-Streckfrequenz in Rutil, Anatas, Brookit und Cassiterit. Tschermaks Min Petrogr Mitt 15: 71–80

    CrossRef  Google Scholar 

  • Beran A, Rossman GR, Grew ES (1989) The hydrous component of sillimanite. Am Mineral 74: 812–817

    Google Scholar 

  • Burns RG, Vaughan DJ (1975) Polarized electronic spectra. In: Karr C (ed) Infrared and Raman spectroscopy of lunar and terrestrial minerals. Academic Press, New York, pp 39–72

    Google Scholar 

  • Hammer VMF, Beran A (1991) Variations in the OH concentration of rutiles from different geological environements. Mineral Petrol 45: 1–9

    CrossRef  Google Scholar 

  • McMillan PF, Hofmeister AM (1988) Infrared and Raman spectroscopy. In: Hawthorne FC (ed) Spectroscopic methods in mineralogy and geology. Rev Mineral, vol 18. Mineral Soc Am, pp 99–159

    Google Scholar 

  • Merritt E (1985) Über den Dichroismus von Kalkspat, Quarz und Turmalin für ultrarote Strahlen. Ann Phys Chem 55: 49–64

    Google Scholar 

  • Rossman GR (1988) Vibrational spectroscopy of hydrous components. In: Hawthorne FC (ed) Spectroscopic methods in mineralogy and geology. Rev Mineral, vol 18. Mineral Soc Am, pp 193–206

    Google Scholar 

  • Rouxhet PG (1970) Hydroxyl stretching bands in micas: a quantitative interpretation. Clay Minerals 8: 375–388

    CrossRef  Google Scholar 

  • Skogby H, Bell DR, Rossman GR (1990) Hydroxide in pyroxene: variations in the natural environment. Am Mineral 75: 764–774

    Google Scholar 

  • Soffer BH (1961) Studies of the optical and infrared absorption spectra of rutile single crystals. J Chem Phys 35: 940–945

    CrossRef  Google Scholar 

  • Strens RGJ, Mao HK, Bell PM (1982) Quantitative spectra and optics of some meteoritic and terrestrial titanian clinopyroxenes. In: Saxena SK (ed) Advances in physical geochemistry, vol 2. Springer, Berlin Heidelberg New York, pp 327–346

    CrossRef  Google Scholar 

  • Tillmanns E, Zemann J (1965) Messung des Ultrarot-Pleochroismus von Mineralen. I. Der Pleochroismus der OH-Streckfrequenz in Azurit. Neues Jahrb Mineral Mh 1965: 228–231

    Google Scholar 

  • Tsuboi M (1950) On the positions of the hydrogen atoms in the cyrstal structure of muscovite, as revealed by the infra-red absorption study. Bull Chem Soc Jpn 23: 83–88

    CrossRef  Google Scholar 

References

  • Aines RD, Rossman GR (1984) Water in minerals? A peak in the infrared. J Geophys Res 88: 4059–4071

    CrossRef  Google Scholar 

  • Allen FM, Buseck PR (1988) XRD, FTIR, and TEM studies of optically anisotropic grossular garnets. Am Mineral 73: 568–584

    Google Scholar 

  • Chopelas A (1990) Thermal properties of forsterite at mantle pressures derived from vibrational spectroscopy. Phys Chem Mineral 17: 149–156

    Google Scholar 

  • Farmer VC (ed) (1974) Infrared spectra of minerals. Mineralogical Society of London, 525 pp

    Google Scholar 

  • Gervais F, Bhn A, Massiot D, Chopinet MH, Naudin F (1987) Infrared reflectivity spectroscopy of silicate glasses. J Non-crystal Sol 89: 384–401

    CrossRef  Google Scholar 

  • Hawthorne FC (ed) (1988) Spectroscopic methods in mineralogy and geology. Rev Mineral 18, 698 pp

    Google Scholar 

  • Hofmeister AM, Chopelas A (1991) Vibrational spectroscopy of end-member sihcate garnets. Phys Chem Mineral 17: 503–526

    CrossRef  Google Scholar 

  • Hofmeister AM, Xu J, Mao H-K, Bell PM, Hoering TC (1989) Thermodynamics of Fe-Mg ohvines at mantle pressures: mid- and far-infrared spectroscopy at high pressure. Am Mineral 74: 281–306

    Google Scholar 

  • Kieffer SW, Navrotsky A (eds) (1985) Microscopic to macroscopic. Rev Mineral vol 14 Mineral Soc Am, Washington DC 427 pp

    Google Scholar 

  • McMillan P, Akaogi M, Ohtani E, Williams Q, Nieman R, Sato R (1989) Cation disorder in garnets along the Mg3Al2Si3O2-Mg4Si4O2 join: an infrared, Raman and NMR study. Phys Chem Mineral 16: 428–435

    CrossRef  Google Scholar 

  • Merzbacher CI, White, WB (1988) Structure on Na in aluminosilicate glasses: a far-infrared reflectance spectroscopic study. Am Mineal 73: 1089–1094

    Google Scholar 

  • Ross NL, Navrotsky A (1988) Study of the MgGeOj polymorphs (orthopyroxene, clinopyroxene and ilmenite structures) by calorimetry, spectroscopy and phase equihbria. Am Mineral 73: 1355–1365

    Google Scholar 

  • Rossman GR, Smyth JR (1990) Hydroxyl contents of accessory minerals in mantle eclocites and related rocks. Am Mineral 75: 775–780

    Google Scholar 

  • Skogby H, Bell DR, Rossman GR (1989) Hydroxide in pyroxene: variations in the natural environment. Am Mineral 75: 764–774

    Google Scholar 

  • Scott JF (1974) Soft-mode spectroscopy: experimetnal studies of structural phase transitions. Rev Mod Phys 46: 83–128

    CrossRef  Google Scholar 

  • Turrell G (1972) Infrared and Raman spectra of crystals. Academic Press. London, 384 pp

    Google Scholar 

  • Young TE, Green HW, Hofmeister AM, Walken D (in press) Infrared spectroscopic investigation of OH in j?-(MgFe)2SiO4 and coexisting ohvine: implications for mantle evolution and dynamics. Phys Chem Min

    Google Scholar 

References

  • Anderson A (1971) The Raman effect vols 1 and 2. Marcel Dekker, New York

    Google Scholar 

  • Berg B, Vallode M, Martinez G (1984) Raman scattering investigation of the OL-P transitionand of the incommensurate phase in quartz. J Phys C Sol State Phys 17: 167–171

    CrossRef  Google Scholar 

  • Buback M, Crerar DM, Kophtz L (1987) Vibrational and electronic spectroscopy of hydrothermal systems. In: Ulmer GC, Barnes HL (eds) Hydrothermal experimental techniques. Wiley, pp 333–359

    Google Scholar 

  • Dele-Dubois MZ, Dhamelincourt P, Schubnel HJ (1980) Etude par spectroscopic Raman d’inclusions dans des diamants sapphirs et emeraudes. Rev Gemmol 11–13; 64: 13–16

    Google Scholar 

  • Chase DB (1986) Fourier-transform Raman spectroscopy. J Am Chem Soc 108(24): 7485–7488

    CrossRef  Google Scholar 

  • Dhamelincourt P (1982) Instrumentation and recent application in micro-Raman spectroscopy. Microbeam Anal 17: 261–269

    Google Scholar 

  • Dubessy J, Poty B, Ramboz C (1989) Advances in C-O-H-N-S fluid geochemistry based on micro-Raman spectrometric analysis of fluid inclusions. Eur J Mineral 1: 517–534

    Google Scholar 

  • Geilikman MB (1982) Mechanisms of polytype stabilization during the wurtzite-sphalerite transition. Phys Chem Mineral. 8(1): 2–7

    CrossRef  Google Scholar 

  • Gardiner DJ, Graves PR (1989) Practical Raman spectroscopy. Springer, Berlin Heidelberg New York

    CrossRef  Google Scholar 

  • Ghose S (1985) Lattice dynamics phase transitions and soft modes. Rev mineral 14: 127–163

    Google Scholar 

  • Hemley RJ, Bell PM, Mao HK (1987) Laser techniques in high-pressure geophysics. Science 237: 605–612

    CrossRef  Google Scholar 

  • Irish DE, Brooker MH (1976) Raman and infrared spectral studies of electrolytes. In: Clark RJH, Ester REM (eds) Advances in infrared and Raman spectroscopy, vol 2, pp 212–311

    Google Scholar 

  • Lyons KB, Sturge MD, Greenblatt M (1984) Low-frequency Raman spectrum of ZrSiO4: 3+. An impurity-induced dynamical distortion. Phys Rev B 30(4): 2127–2132

    CrossRef  Google Scholar 

  • McMillan PF (1989) Raman spectroscopy in mineralogy and geochemistry. Annu Rev Earth Planet Sci 17: 255–283

    CrossRef  Google Scholar 

  • McMillan PF, Hofmeister AM (1988) Infrared and Raman spectroscopy. In: Hawthorne FL (ed) Reviews in mineralogy, vol 18. Spectroscopic methods in mineralogy and geology, pp 99–159

    Google Scholar 

  • Orlov R Yu, Guseva EW (1989) Raman spectroscopy in mineralogy and material science. Izv AN SSSR, Ser Geol 4: 84–95

    Google Scholar 

  • Pasteris JD, Wopenka B, Seitz JC (1989) Practical aspects of quantitative laser Raman microprobe spectroscopy for the study at fluid inclusions. Geochim Cosmochim Acta 52(5): 979–988

    CrossRef  Google Scholar 

  • Salje E (1986) Raman spectroscopy investigation of the order parameter behavior phase transition and evidence for Na-K site ordering. Phys Chem Mineral 13(5): 340–346

    CrossRef  Google Scholar 

  • Turrell G (1972) Infrared and Raman spectra of crystals. New York, Academic Press

    Google Scholar 

  • Vogt H (1982) Coherent anti-stokes Raman scattering and hyper-raman scattering. In: Cardona M, Guntherodt (eds) Light scatering in solids II. Springer, Berhn Heidelberg New York, pp 277–327

    Google Scholar 

References

  • Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Clarendon Press, Oxford

    Google Scholar 

  • Bednarek J, Plonka A (1987) Single-crystal electron spin resonance studies on radiation- produced species in ice J Chem Soc Faraday Trans 183: 3725–3735; 3737–3747

    Google Scholar 

  • Bershov LV, Gaite JM, Hafner SS, Rager H (1983) Electron paramagnetic resonance and ENDOR studies of Cr2+-AP2+ pairs in forsterite. Phys Chem Miner 9: 95–101

    CrossRef  Google Scholar 

  • Calas G (1988) Electron paramagnetic resonance. In: Reviews in mineralogy. Spectroscopic methods in mineralogy and geology vol 18, Mineral Soc Am, Washington DC pp 513–571

    Google Scholar 

  • Che M, Fraissard J, Vedrine JC (1974) Application of electron paramagnetic resonance and nuclear magnetic resonance to the study of sihcates and clays. Bull Groupe Fr Argiles 26: 1–53

    Google Scholar 

  • Dusausoy Y, Babkine J, Gaite JM, Hafner SS, Rager II (1990) Localisation par RPE des ions traces Fe2+ dans la structure disthène. Réunion de la société Française de Minéralogie, Rennes, 3–8 Septembre

    Google Scholar 

  • Graham WRM (1987) Recent progress in the study of metals in fossil fuel sources by EPR. In: Weil JA (ed) Electronic magnetic resonance of the solid state. Canadian Society for Chemistry, Ottawa pp 323–330

    Google Scholar 

  • Griscom DL (1990) Electron spin resonance. Glass Sci Technol 4B: 151–251

    Google Scholar 

  • Herve A (1985) La résonance paramagnétique électronique. In: Calas G (ed) Méthodes d’études spectroscopiques des minéraux. Soc Franc Minéralogie et Cristallographie, pp 313–389

    Google Scholar 

  • Isoya J, Kanda H, Norris JR, Tang J, Bowman MK (1989) Fourier-transform and continuous- wave EPR studies of nickel in synthetic diamond: site and spin multiplicity. Phys Rev B 41: 3905–3913

    CrossRef  Google Scholar 

  • Kevan L, Narayana M (1983) Electron spin echo studies of the location and adsórbate interactions of paramagnetic metal species in zeohtes. ACSSS 218 (Intrazeohte Chemistry) New York pp 283–299

    Google Scholar 

  • Kliava Ya G (1988) EPR spectroscopy of disordered solids. Zinatne, Riga

    Google Scholar 

  • Krasnobaev AA, Votyakov SL, Krokhalev VYa (1988). Spectroscopic properties of zircon and its geological apphcations. Nauka, Moscow

    Google Scholar 

  • Lehmann G (1979, 1980) Correlation of zero-field sphttings and site distortions. Phys State Sol (B) 92: 417–424; 99: 623–633

    Google Scholar 

  • Lloyd RV, Lumsden DN, Gregg JM (1985) Relationship between paleotemperatures of metamorphic dolomites and ESR-determined Mn(II) partitioning ratios. Geochim Cosmo- chim Acta 49: 2565–2568

    CrossRef  Google Scholar 

  • Low W (1968) Electron spin resonance — a tool in mineralogy and geology. Adv Electronics Electron Phys 24: 51–108

    CrossRef  Google Scholar 

  • Marfunin AS (1979a) Physics of minerals and inorganic compounds. Springer, Berlin Heidelberg New York.

    CrossRef  Google Scholar 

  • Also: (1979b) Spectroscopy, luminescence and radiation centers in minerals. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Matyash IV, Litovchenko AS, Bagmut NN, Proshko VYa (1981) Radiospectroscopy of feldspars. Naukova Dumka, Kiev

    Google Scholar 

  • McKinney TM and Goldberg IB (1989) Electron spin resonance. In: Rossiter BW and Hamilton JF (eds) Physical methods of chemistry. Volume 3B, Chap 4 (2nd ed). John Wiley, New York

    Google Scholar 

  • McWhinnie WR (1985) Electron spin resonance and nuclear magnetic resonance applied to minerals. In: Berry FJ and Vaughan DJ (eds) Chem. Bonding Spectrosc Miner Chem Chapman and Hall, London, pp 209–249

    CrossRef  Google Scholar 

  • Michoulier J, Gaite JM (1972) Site assignment of Fe2+in low-symmetry crystals. Application to NaAlSiaOg. J Chem Phys 56: 5205–5213

    CrossRef  Google Scholar 

  • Morton JR, Preston KF (1987) Landolt-Bornstein numerical data and functional relationships in science and technology. In: Fischer H (ed) New Series, Group II, vol 17a. Springer, Berlin Heidelberg New York, pp 577

    Google Scholar 

  • Newman DJ, Urban W (1975) Interpretation of S-state ion EPR spectra. Adv Phys 24:793–844

    CrossRef  Google Scholar 

  • Newton ME, Baker JM (1989) 2+N ENDOR of the OKI centre in natural type lb diamond. J Phys Condens Matter 1: 10549–10561

    CrossRef  Google Scholar 

  • Petrov I, Agel A, Hafner SS (1989) Distinct defect centers at oxygen positions, in albite. Am Mineral 74: 1130–1141

    Google Scholar 

  • Ruck R, Dusausoy Y, Gaite JM (1988) Electron paramagnetic resonance of a new Fe2+ centre in cassiterite. Bull Mineral 111: 143–147

    Google Scholar 

  • Ruck R, Dusausoy Y, Nguyen Trung C, Gaite JM, Murciego A (1989) Powder EPR study of natural cassiterites and synthetic Sn02 doped with Fe, Ti, Na and Nb. Eur J Mineral 1: 343–352

    Google Scholar 

  • Sherbakova MYa (1981) Electron and hole centers in scheehte crystals according to EPR data. Molecular spectroscopy and x-ray analysis of minerals. Nauka, Novosibirsk pp 87–128

    Google Scholar 

  • Sherbakova MYa, Distanova AN, Teleshev AV, Dovgel VN, Minin NA, Radionova RB (1985) EPR investigation of quartz from various types of granitoids. Nauka, Novosibirsk Geol Geophys 9: 89–96

    Google Scholar 

  • Speit B, Lehmann G (1982) Radiation defects in feldspars. Phys Chem Mineral 8: 77–82

    CrossRef  Google Scholar 

  • Solntsev VP (1981) Nature of color centers and EPR in beryl and chrysoberyl. Problems of theoretical and genetic mineralogy. Nauka, Novosibirsk pp 92–140

    Google Scholar 

  • Stevens KWH (1952) Matrix elements and operator equivalents connected with the magnetic properties of rare-earth ions. Proc Phys Soc Lond A65: 209–215

    Google Scholar 

  • Taylor PC, Baugher JF, Kriz HM (1975) Magnetic resonance spectra in polycrystalhne solids. Chem Rev 75: 203–240

    CrossRef  Google Scholar 

  • Vassilikou-Dova AB, Lehmann G (1987) Investigations of minerals by electron paramagnetic resonance. Fortschr Mineral 65: 173–202

    Google Scholar 

  • Weil JA, Buch T, Clapp JE (1973) Crystal point group symmetry and microscopic tensor properties in magnetic resonance spectroscopy. Adv Magn Reson 6: 183–257

    Google Scholar 

  • Weil JA (1984) A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalhne quartz. Phys Chem Mineral 10: 149–165

    CrossRef  Google Scholar 

  • Weil JA (1993) A review of EPR spectroscopy of the point defects in a-quartz: the decade 1982–1992. In: Helms CR, Deal, BE (ed) The physics and chemistry of SiOj and the Si-Si02 interface. 2. Plenum Press, New York, pp 131–144

    Google Scholar 

  • References

    Google Scholar 

  • Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions, Calrendon Press, Oxford

    Google Scholar 

  • Barklie RC, Niklas JR, J-M Spaeth (1980) J Phys C Sol State Phys 13: 1745

    CrossRef  Google Scholar 

  • Bauer RU, Niklas JR, Spaeth J-M (1983) Phys State Sol b 119: 171

    CrossRef  Google Scholar 

  • DuVarney RC, Niklas JR, Spaeth J-M (1980) phys state sol 97: 135

    CrossRef  Google Scholar 

  • Feher G (1959) Phys Rev 114: 1219; 1249

    Google Scholar 

  • Ishchenko SS, Brik AB (1987) Fiziol Tverd Tela Leningrad 29: 3481

    Google Scholar 

  • Kevan C, Kispert W (1976) Electron spin double resonance spectroscopy. Wiley and Sons, N.Y

    Google Scholar 

  • Niklas JR, Spaeth J-M (1980) Phys. state sol b 101: 221

    CrossRef  Google Scholar 

  • Seidel H, Wolf HC (1968) In: Fowler WB (ed) Physics of color centers. Academic Press, N.Y.

    Google Scholar 

  • Spaeth JM (1988) Experimentelle Technik der Physik 36: 257

    Google Scholar 

  • Spaeth JM (1989) Spec Period Rep IIB: 89

    Google Scholar 

  • Spaeth JM (1990) In: Rossiter BW, Hamilton JF (eds) Physical methods in chemistry, vol 5, Chap 6

    Google Scholar 

  • Spaeth JM, Lohse F (1990) J Phys Chem Sol 51: 861

    CrossRef  Google Scholar 

  • Spaeth JM, Koschnick F (1991) J Phys Chem Sol (in press)

    Google Scholar 

  • Spaeth JM, Niklas JR, Bartram RH (1991) Multiple magnetic resonance spectroscopy for structural analysis of point defects in solids. Springer, Berlin Heidelberg New York

    Google Scholar 

References

  • Bowman MK (1990) Fourier transform electron spin resonance. In: Kevan L, Bowman MK (eds) Modern pulsed and continuous-wave electron spin resonance

    Google Scholar 

  • Froncisz W, Hyde JS (1980) The loop-gap resonator: a new microwave lumped circuit ESR sample structure. J Magn Reson 47: 515–521

    Google Scholar 

  • Gorcester J, Millhauser GL, Freed JH (1990) Two-dimensional electron spin resonance. Ibid, pp 119–194

    Google Scholar 

  • Grupp A, Mehring M (1990) Pulsed ENDOR spectroscopy in solids. Ibid, pp 195–230

    Google Scholar 

  • Hoch MJR (1981) Electron spin resonance imaging of paramagnetic centers in solids. Sol State Phys 14: 5659–5666

    CrossRef  Google Scholar 

  • Lebedev YaS (1990) High-frequency continuous-wave electron spin resonance. Ibid, pp 365–404

    Google Scholar 

  • Schweiger A (1990) New trends in pulsed electron spin resonance methodology. Ibid, pp 43–118

    Google Scholar 

  • Yakimenko OYe, Smirnov Al, Lebedev YaS (1990) EPR imaging of structurally heterogenious media. Appl Magn Reson 1: 1–19

    CrossRef  Google Scholar 

References

  • Abragam A (1961) The principles of nuclear magnetism. Clarendon, Oxford, 599 pp

    Google Scholar 

  • Akitt JW (1983) NMR and chemistry, an introduction to the Fourier-transform multi-nuclear era. 2nd ed. Chapman and Hall, London, 263 pp

    Google Scholar 

  • Becker ED (1980) High resolution NMR, theory and application. 2nd ed. Academic Press, New York, 354 pp

    Google Scholar 

  • Bhnc R (1981) Magnetic resonance and relaxation in structurally incommensurate systems. Phys Rep 79: 331–398

    CrossRef  Google Scholar 

  • Engelhardt G, Michel D (1987) High resolution NMR spectroscopy of silicates and zeohtes. Wiley, New York, 485 pp

    Google Scholar 

  • Farnan I, Stebbins JF (1990) High-temperature 29Si NMR investigation of solid and molten silicates. J Am Chem Soc 112: 32–39

    CrossRef  Google Scholar 

  • Farrar TC, Becker ED (1971) Pulse and Fourier transform NMR: introduction to theory and methods. Academic Press, New York

    Google Scholar 

  • Fripiat JJ (1980) Applications of NMR to the study of clay minerals. In: Stucki JW, Banwart WL (eds) Advanced chemical methods for soil and clay minerals research. NATO Adv Studies Inst Ser C, Vol C63. Reidel, Dordrecht

    Google Scholar 

  • Fukushima E, Roeder SB (1981) Experimental pulse NMR, a nuts and bolts approach. Addison-Wesley, Reading MA, 519 pp

    Google Scholar 

  • Fyfe CA (1984) Solid state NMR for chemists. CRC Press, Guelph, Ontario Gerstein BC

    Google Scholar 

  • Dybowski CR (1985) Transient techniques in NMR of sohds. Academic Press, New York, 295 pp

    Google Scholar 

  • Ghose S, Tsang T (1973) Structural dependence of quadrupole couphng constant e2qQ/h for 27Al and crystal field parameter D for Fe+3 in aluminosilicates. Am Mineral 58: 748–755

    Google Scholar 

  • Harris RK (1983) Nuclear magnetic resonance spectroscopy. Pitman Books, London

    Google Scholar 

  • Kirkpatrick RJ (1988) MAS NMR spectroscopy of minerals and glass. In: Hawthorne FG (ed) Spectroscopic methods in mineralogy and geology. Reviews in mineralogy Vol 18, Min Soc Am, Washington, DC

    Google Scholar 

  • Lippmaa E, Magi M, Samoson A, Tarmak M, Engelhardt G, (1980) Structural studies of sihcates by solid-state high-resolution 29Si NMR spectroscopy. J Am Chem Soc 103: 4889–4893

    CrossRef  Google Scholar 

  • Lippmaa E, Magi M, Samoson A, Tarmak M, Engelhardt G (1981) Investigation of the structure of zeohtes by solid-state high-resolution Si NMR spectroscopy. J Am Chem Soc 103: 4992–4996

    CrossRef  Google Scholar 

  • Oldfield E, Kirkpatrick RJ (1985) High-resolution nuclear magnetic resonance of inorganic solids. Science 227: 1537–1544

    CrossRef  Google Scholar 

  • Phillips BL, Kirkpatrick RJ, Thompson JG (1991) 29Si magic-angle spinning NMR spectroscopy of the ferroelastic to incommensurate transition in Sr2SiO4. Phys Rev-B-Condemned Matter 43: 13280–13284

    CrossRef  Google Scholar 

  • Rigamonti A (1984) NMR-NQR studies of structural phase transitions. Adv Phys 33:115–191

    CrossRef  Google Scholar 

  • Sanders JKM, Hunter BK (1987) Modern NMR spectroscopy. Oxford Univ Press, Oxford, 308 pp

    Google Scholar 

  • Schlicter CP (1978) Principles of magnetic resonance, 2nd edn. Springer, Berhn Heidelberg New York

    Google Scholar 

  • Sindorf DW Maciel GE (1983) 29Si NMR study of dehydrated/rehydrated silica gel using cross polarization and magic-angle spinning. J Am Chem Soc 105: 1487–1493

    CrossRef  Google Scholar 

  • Stebbins JF (1988) NMR spectroscopy and dynamic processes in mineralogy and geochemistry, In: Hawthorne FC (ed) Spectroscopic methods in mineralogy. Reviews in mineralogy Vol 18, Min Soc Am Washington DC

    Google Scholar 

  • Tossell JA (1991) Calculation of the effect of deprotonation on the Si NMR shielding for the series Si(OH)4 to SiO44. Phys Chem Mineral 17: 654–660

    CrossRef  Google Scholar 

  • Weiss CA, Kirkpatrick RJ, Altaner SP (1990) Variations in interlayer cation sites of clay minerals as studied by 133Cs MAS NMR spectroscopy. Am Mineral 75: 970–981

    Google Scholar 

  • Wilson MA (1987) NMR Techniques and applications in geochmeistry and soil chemistry. Pergamon Press, Oxford

    Google Scholar 

  • Yannoni CS (1982) High resolution NMR in solids: the CPMAS experiments. Accts Chem Res 15: 201–208

    CrossRef  Google Scholar 

  • Abdulhn RS, Kal’chev VP, Penkov IN (1987) Investigation of copper minerals by NQR: crystallochemistry, electron structure, lattice dynamics. Phys Chem Mineral 14: 258–263

    CrossRef  Google Scholar 

  • Brinkmann D, Mah M (1994) NMR-NQR Studies of high-temperature super conductors. In: NMR basic principles and progress, vol 31. Springer, Berhn Heidelberg New York

    Google Scholar 

  • Brinkmann D (1992) Probing the electronic structure of Y-Ba-Cu-O superconductors by copper NQR/NMR. Z Naturforsch 47a

    Google Scholar 

  • Lücken EAC (1969) Nuclear quadrupole couphng constants. Academic Press, London

    Google Scholar 

  • Brewer JH, Fleming DG, Spencer DP (1981) μ +e hyperfine interactions in quartz crystals. In: Kauffman EN, Shenoy GR (eds) Nuclear and electron spectroscopies apphed to materials science. Elsevier, Amsterdam, pp 487–493

    Google Scholar 

  • Chappert J, Grynszpan RI (1984) Muons and pions in materials research. North-Holland, Amsterdam, Chap 10

    Google Scholar 

  • Cox SFJ, Symons MCR (1986) μ SR spectroscopy on free radicals: a complement to ESR spectroscopy. Hyperfine Interact 32: 689–706

    CrossRef  Google Scholar 

  • Patterson BD (1988) Muonium states in semiconductors. Rev Mod Phys 60(1): 69–159

    CrossRef  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hawthorne, F.C. et al. (1995). Solid State Spectroscopy. In: Marfunin, A.S. (eds) Methods and Instrumentations: Results and Recent Developments. Advanced Mineralogy, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78526-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78526-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78528-3

  • Online ISBN: 978-3-642-78526-9

  • eBook Packages: Springer Book Archive