Skip to main content

Point Defects and Diffusion in Minerals

  • Chapter
Advanced Mineralogy
  • 715 Accesses

Abstract

Defects in minerals play a central role in the mechanics of many geochemical and geophysical phenomena. Prominent among these phenomena are processes whose rates are controlled by bulk diffusion or the coupling of bulk diffusion and other mechanisms. Among these are (1) the homogenization of zoned crystals, (2) alteration of the compositions of minerals, (3) order-disorder reaction, (4) resetting of radiometric ages and the formulation of closure temperatures, (5) isotopic equilibration, (6) plastic deformation of minerals, (7) formation of exsolution lamellae, and (8) growth and dissolution of minerals and related processes such as sintering. Largely due to the compositional complexity of geologic materials, progress in understanding the relationship between mineral point defect chemistry and diffusion in geologic materials has been rather limited. In fact, entitling this chapter “Point Defects and Diffusion in Olivine” would have required the omission of surprisingly little data. Before continuing, we refer the reader the texts of Lasaga and Kirkpatrick (1981) and Schmalzried (1981), and the references therein, for more detailed descriptions of point defect chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Buening DK, Buseck PR (1973) Fe-Mg lattice diffusion in olivine. Geophys Res 78: 6852–6862

    Article  Google Scholar 

  • Condit RH (1981) An approach to analyzing diffusion in olivine. In: ( Schock RN, ed) Point Defects in Minerals. Geophys Monogr Ser vol 31, pp 106–115, AGU, Washington, DC

    Chapter  Google Scholar 

  • Gerard O, Jaoul O (1989) Oxygen diffusion in San Carlos olivine. J Geophys Res 94: 4119–4128

    Article  Google Scholar 

  • Hermeling J, Schmalzried H (1984) Tracer diffusion of Fe-cations in olivine, (FexMg1-x)2SiO4 ( III ). Phys Chem Minerals 11: 161–166

    Google Scholar 

  • Hirsch LM, Shankland TJ (1991) Determination of defect equilibria in minerals. Geophys Res (in press)

    Google Scholar 

  • Houlier B, Jaoul O, Abel F, Liebermann RC (1988) Oxygen and silicon self-diffusion in natural olivine at T = 1300°C. Phys Earth Planet Inter 50: 240–250

    Article  Google Scholar 

  • Houlier B, Cheraghmakani M, Jaoul O (1990) Silicon diffusion in San Carlos olivine. Phys Earth Planet Int 62: 329–340

    Article  Google Scholar 

  • Jaoul O, Froidevaux C, Durham WB, Michaut M (1980) Oxygen self-diffusion in forsterite: implications for high-temperature creep mechanism. Earth Planet Sci Lett 47: 391–397

    Article  Google Scholar 

  • Jaoul O, Poumellac M, Froidevaux C, Havette A (1981) Silicon diffusion in forsterite: A new constraint for understanding mantle deformation. In: ( Stacey FD, Paterson MS, Nicolas A, eds) Anaelasticity in the Earth. Geodyn Ser vol 4, pp 95–100, AGU, Washington, DC

    Chapter  Google Scholar 

  • Jaoul O, Houlier B, Abel F (1983) Study of 18O diffusion in magnesium orthosilicate by nuclear microanalysis. J Geophys Res 88: 613–624

    Article  Google Scholar 

  • Lasaga AC, Kirkpatrick RJ (1981) Kinetics of geochemical processes. Mineralogical Society of America, Washington, DC, pp 398

    Google Scholar 

  • Mackwell SJ, Kohlstedt DL, Paterson MS (1985) The role of water in the deformation of olivine single crystals. J Geophys Res 90: 11,319–11, 333

    Google Scholar 

  • Nakamura A, Schmalzried H (1983) On the nonstoichiometry and point defects of olivine. Phys Chem Minerals 10: 27–37

    Article  Google Scholar 

  • Nakamura A, Schmalzried H (1984) On the Fe2+ -Mg2+ interdiffusion in olivine (II). Ber Bunsenges Phys Chem 88: 140–145, 1984

    Google Scholar 

  • Ricoult DL, Kohlstedt DL (1985) Experimental evidence for the effect of chemical environment upon the creep rate of olivine. In: ( Schock RN, ed) Point defects in minerals. Geophys Monogr Ser vol 31, pp 171–184, AGU, Washington, DC

    Chapter  Google Scholar 

  • Ryerson FJ, Durham WB, Cherniak DJ, Lanford WA (1989) Oxygen diffusion in olivine: effect of oxygen fugacity and implications for creep. J Geophys Res 94: 4105–4118

    Article  Google Scholar 

  • Schmalzried H (1981) Solid state reactions. Verlag Chemie, Weinheim, pp 254

    Google Scholar 

  • Smyth DM, Stocker RL (1975) Point defects and non-stoichiometry in forsterite. Phys Earth Planet Inter 10: 183–192

    Article  Google Scholar 

  • Stocker RL, Smyth DM (1978) Effect of enstatite activity and oxygen partial pressure on the defect chemistry of olivine. Phys Earth Planet Inter 16: 145–156

    Article  Google Scholar 

  • Zhang Y, Stolper EM, Wasserburg GJ (1990) Role of water during hydrothermal oxygen diffusion in minerals. Trans Am Geophys Un 71: 650

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ryerson, F.J., Condit, R.H. (1994). Point Defects and Diffusion in Minerals. In: Marfunin, A.S. (eds) Advanced Mineralogy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78523-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78523-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78525-2

  • Online ISBN: 978-3-642-78523-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics